cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A238574 k-Lehmer numbers: composite integers n such that phi(n) | (n-1)^k.

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 561, 595, 679, 703, 763, 771, 949, 1105, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1729, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2465, 2509, 2701, 2761, 2821, 2955, 3031, 3097, 3145, 3277
Offset: 1

Views

Author

Keywords

Comments

Composite numbers in A187731.
J. M. Grau and A. M. Oller-Marcén showed that all terms of this sequence are terms of A003277 (cyclic numbers) and this sequence contains all terms of A002997 (Carmichael numbers). - Tomohiro Yamada, Sep 28 2020

Examples

			2^3*3^2 = 72 = phi(91) divides (91-1)^3 = (2*3^2*5)^3 implies 91 is a 3-Lehmer number.
		

Crossrefs

Cf. A187731 (numbers n such that rad(phi(n)) divides n-1).
Cf. A173703 (2-Lehmer numbers; i.e., phi(n) divides (n-1)^2).
Cf. A234936 (smallest composite n-Lehmer number which is not an (n-1)-Lehmer number).
Cf. A207080 (minimum Carmichael number which is not an n-Lehmer number).
Cf. A234958 (number of k-Lehmer numbers up to 10^n).
Cf. A238575 (k-Lehmer numbers with two prime factors).

Programs

  • Mathematica
    rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1+Range[1000], !PrimeQ[#]&&Mod[#-1, rad[EulerPhi[#]]]==0&]
  • PARI
    is(n)=my(p=eulerphi(n),g=n); if(isprime(n),return(0),n--); while((g=gcd(p,g))>1, p/=g); p==1 && n \\ Charles R Greathouse IV, Mar 03 2014

A234936 a(n) is the smallest composite n-Lehmer number.

Original entry on oeis.org

561, 15, 451, 51, 679, 255, 2091, 771, 43435, 3855, 31611, 13107, 272163, 65535, 494211, 196611, 2089011, 983055, 8061051, 3342387, 31580931, 16711935, 126027651, 50529027, 756493591, 252645135, 4446487299, 858993459, 8053383171, 4294967295, 32212942851
Offset: 2

Views

Author

Giovanni Resta, Jan 01 2014

Keywords

Comments

A number n is a k-Lehmer number if there exists a k such that phi(n) divides (n-1)^k, but not (n-1)^(k-1). The existence of a composite 1-Lehmer number is deemed improbable.

Examples

			a(3) = 15 because 15 is the smallest n such that phi(n) divides (n-1)^3 and does not divide (n-1)^2, i.e., it is the smallest 3-Lehmer number.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = For[k = 2, True, k++, If[CompositeQ[k], phi = EulerPhi[k]; If[Divisible[(k-1)^n, phi], If[!Divisible[(k-1)^(n-1), phi], Return[k] ]]]]; Table[Print[n, " ", a[n]]; a[n], {n, 2, 20}] (* Jean-François Alcover, Jan 26 2019 *)
  • PARI
    a(n) = {x = 2; while (!(!((x-1)^n % eulerphi(x)) && ((x-1)^(n-1) % eulerphi(x))), x++); x;} \\ Michel Marcus, Jan 26 2014

A238575 k-Lehmer numbers with two prime factors.

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 259, 451, 481, 511, 679, 703, 763, 771, 949, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1843, 1891, 2047, 2071, 2119, 2509, 2701, 2761, 3031, 3097, 3277, 3409, 3589, 3667, 4033, 4039, 4141, 4369, 4411, 4681, 5383, 5461, 5611, 5629
Offset: 1

Views

Author

Keywords

Comments

The first terms which are == 0 (mod 3) are 15, 51, 771, 196611, which are equal to 3*(5, 17, 257, 65537) = 3*(2^2+1, 2^4+1, 2^8+1, 2^16+1), i.e., 3 times the Fermat primes > 3. No other exceptions below 10^9. - Giovanni Resta

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; Select[1 + \
    Range[10000], Length[FactorInteger[#]] == 2 && Mod[# - 1,
       rad[EulerPhi[#]]] == 0 &]

A234958 Number of composite k-Lehmer numbers up to 10^n.

Original entry on oeis.org

0, 4, 19, 103, 422, 1559, 5645, 19329, 64040, 207637, 663845, 2103055
Offset: 1

Views

Author

Giovanni Resta, Jan 01 2014

Keywords

Comments

A number n is a k-Lehmer number if there exist a k such that phi(n) divides (n-1)^k.
The values of a(10) and a(11) computed by N. McNew in the linked paper are smaller than mine. I provide a link to my full list so that it could be independently checked.

Examples

			There are 4 k-Lehmer numbers up to 10^2, namely 15, 51, 85, and 91, so a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    kLQ[n_] := n > 1 && ! PrimeQ[n] && Mod[n-1, Times @@ First /@ FactorInteger@ EulerPhi@n] == 0; Table[Length@ Select[Range[2, 10^k], kLQ], {k, 6}]

A333314 Composite non-Carmichael numbers k such that rad(phi(k)) divides k-1, where rad(k) is the squarefree kernel of k (A007947) and phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 595, 679, 703, 763, 771, 949, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2509, 2701, 2761, 2955, 3031, 3097, 3145, 3277, 3367, 3409, 3589, 3655, 3667
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2020

Keywords

Comments

McNew and Wright proved that this sequence is infinite.

Examples

			15 = 3 * 5 is a term since it is composite and not a Carmichael number, and rad(phi(15)) = rad(8) = 2 divides 15 - 1 = 14.
		

Crossrefs

Complement of the primes and Carmichael numbers (union of A000010 and A002997) with respect to A187731.
Complement of A002997 with respect to A238574.

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[4000], Divisible[#-1, rad[EulerPhi[#]]] && !Divisible[#-1, CarmichaelLambda[#]] &]
Showing 1-5 of 5 results.