cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A376639 Terms of A151999 which are not a term of A293928.

Original entry on oeis.org

10, 30, 34, 42, 50, 60, 68, 78, 90, 102, 110, 114, 126, 136, 150, 156, 170, 180, 204, 210, 220, 222, 228, 234, 250, 270, 294, 300, 306, 330, 340, 342, 378, 390, 408, 410, 420, 438, 444, 450, 456, 468, 510, 514, 540, 546, 550, 570, 578, 582, 612, 630, 654, 660, 666
Offset: 1

Views

Author

Torlach Rush, Sep 30 2024

Keywords

Comments

Conjecture: For each a(n) there is no a(n) = A000010(a(k)), k > n.
Conjecture: Every term of A293928 exists in A151999.

Examples

			10 is a term because 2 divides 4 and 10 and 10 is not a term of A293928.
666 is a term because 666 is a term of A151999 and 666 is not a term of A293928 as it has no totient inverses.
		

Crossrefs

Programs

  • Sage
    terms = []
    for n in range(1, 10000): # Equivalent of A151999/b151999.txt
        if euler_phi(n)**2 == euler_phi(euler_phi(n) * n): terms.append(n)
    displayTerms = []
    for n in range(0,10000):
        searchTerms = terms[n+1::]
        found = False
        for k in range(0, len(searchTerms)):
            if terms[n] == euler_phi(searchTerms[k]):
                found = True
                break
        if False == found and n < len(terms):
            displayTerms.append(terms[n])
    for n in range(0, 55):
        print(displayTerms[n], end=', ')

A055744 Numbers k such that k and phi(k) have the same prime factors.

Original entry on oeis.org

1, 4, 8, 16, 18, 32, 36, 50, 54, 64, 72, 100, 108, 128, 144, 162, 200, 216, 250, 256, 288, 294, 324, 400, 432, 450, 486, 500, 512, 576, 578, 588, 648, 800, 864, 882, 900, 972, 1000, 1014, 1024, 1152, 1156, 1176, 1210, 1250, 1296, 1350, 1458, 1600, 1728, 1764
Offset: 1

Views

Author

Labos Elemer, Jul 11 2000

Keywords

Comments

Contains products of suitable powers of 2 and Fermat primes. For x = 2^u*3^w, phi(x) = 2^u*3^(w-1) with suitable exponents. Analogous constructions are possible with {2,3,7} prime divisors, etc.
From Ivan Neretin, Mar 19 2015: (Start)
Also, numbers k that meet the following criteria for every prime p dividing k:
1. All prime divisors of p-1 must also divide k;
2. If k has no prime divisors of the form m*p+1, and k is divisible by p, then k must be divisible by p^2.
Also, numbers k for which {k, phi(k), phi(phi(k))} is a geometric progression.
(End)
All terms > 1 are even. An even number k is in the sequence iff 2*k is in the sequence. - Robert Israel, Mar 19 2015
For n > 1, the largest prime factor of a(n) has multiplicity >= 2. For all prime factors more than half of the largest prime factor of a(n), the multiplicity differs from 1.
If k = p1^a1 * p2^a2 * ... * pm^am is in the sequence, then so is p1^b1 * p2^b2 * ... * pm^bm for 1 <= i <= m and prime pi and bi >= ai.
If m * p^2 is not in the sequence, for a prime p and some m > 0, then neither is m * p^3. - David A. Corneth, Mar 22 2015
A027748(a(n),j) = A027748(A000010(a(n)),j) for j=1..A001221(a(n)); also numbers k such that k and phi(k) have the same squarefree kernel: A007947(a(n)) = A007947(A000010(a(n))). - Reinhard Zumkeller, Jun 01 2015
Pollack and Pomerance call these numbers "phi-perfect numbers". - Amiram Eldar, Jun 02 2020

Examples

			k = 578 = 2*17*17, phi(578) = 272 = 2*2*2*2*17 with 2 and 17 prime factors, so 578 is a term.
k = 588 = 2*2*3*7*7, phi(588) = 168 = 2*2*2*3*7, so 588 is a term.
k = 264196 = 2*2*257*257, phi(264196) = 512*257 = 131584, so 264196 is a term.
		

Crossrefs

Intersection of A073539 and A151999. - Amiram Eldar, Jun 02 2020
Cf. A007947, A027748, A055742, A173557, A256248, subsequence of A124240.

Programs

  • Haskell
    a055744 n = a055744_list !! (n-1)
    a055744_list = 1 : filter f [2..] where
       f x = all ((== 0) . mod x) (concatMap (a027748_row . subtract 1) ps) &&
             all ((== 0) . mod (a173557 x))
                 (map fst $ filter ((== 1) . snd) $ zip ps $ a124010_row x)
             where ps = a027748_row x
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    select(numtheory:-factorset = numtheory:-factorset @ numtheory:-phi,
    [1, 2*i $ i=1..2000]); # Robert Israel, Mar 19 2015
    isA055744 := proc(n)
        nfs := numtheory[factorset](n) ;
        phinfs := numtheory[factorset](numtheory[phi](n)) ;
        if nfs = phinfs then
            true;
        else
            false;
        end if;
    end proc:
    A055744 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA055744(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Select[Range@ 1800,
    First /@ FactorInteger@ # == First /@ FactorInteger@ EulerPhi@ # &] (* Michael De Vlieger, Mar 21 2015 *)
  • PARI
    is(n)=factor(n)[,1]==factor(eulerphi(n))[,1] \\ Charles R Greathouse IV, Oct 31 2011
    
  • PARI
    is(n)=my(f=factor(n)); f[,1]==factor(eulerphi(f))[,1] \\ Charles R Greathouse IV, May 26 2015
    

Extensions

Corrected and extended by James Sellers, Jul 11 2000

A073539 Numbers k such that if p is a prime dividing k then p divides phi(k).

Original entry on oeis.org

1, 4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 81, 98, 100, 108, 121, 125, 128, 144, 147, 162, 169, 196, 200, 216, 225, 242, 243, 250, 256, 288, 289, 294, 324, 338, 343, 361, 392, 400, 432, 441, 450, 484, 486, 500, 507, 512, 529, 576, 578, 588, 605
Offset: 1

Views

Author

Benoit Cloitre, Aug 27 2002

Keywords

Comments

Converse does not necessarily hold: phi(k) may have prime factors not dividing k.
Numbers k for which phi(k)*lambda(k) == 0 (mod k), where lambda(k) = A002322(k) is the Carmichael function. - Michel Lagneau, Nov 18 2012
Pollack and Pomerance call these numbers "phi-abundant numbers". Numbers k such that rad(k) | phi(k), where rad(k) is the squarefree kernel of k (A007947). - Amiram Eldar, Jun 02 2020
If p is the largest prime divisor of a term k, then p^2 divides k. - Max Alekseyev, Aug 27 2024

Examples

			98 = 2*7^2 and phi(98)=2*3*7 so if p divides 98 then p divides phi(98), hence 98 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..620] | IsZero(EulerPhi(n)^NumberOfDivisors(n) mod n)]; // Bruno Berselli, Jul 27 2012
  • Mathematica
    Select[Range[700],And@@Divisible[EulerPhi[#],Transpose[FactorInteger[#]] [[1]]]&] (* Harvey P. Dale, Nov 02 2011 *)

A293928 Totients phi(m) having one or more solutions m to phi(m)^2 = phi(phi(m)*m).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 84, 96, 100, 108, 120, 128, 144, 160, 162, 168, 192, 200, 216, 240, 252, 256, 272, 288, 312, 320, 324, 336, 360, 384, 400, 432, 440, 480, 486, 500, 504, 512, 544, 576, 588, 600, 624, 640, 648, 672, 684
Offset: 1

Views

Author

Torlach Rush, Oct 19 2017

Keywords

Comments

"Totients" are terms of A000010. - N. J. A. Sloane, Oct 22 2017
The smallest totient absent from the list is 10. This is because the totient inverses of 10, 11 and 22 are not solutions to phi(m)^2 = phi(phi(m)*m).
The formula is recursive. For example, taking a(22) we get the following: 11664 = phi(108*324), 1259712 = phi(11664*324), 136048896 = phi(1259712*324), ...
Where (if ever) does this first differ from A068997? - R. J. Mathar, Oct 30 2017
Apparently the set of the m is A151999. - R. J. Mathar, Mar 25 2024
If m satisfies phi(m)^2 = phi(phi(m)*m), then it satisfies phi(m)^(k+1) = phi(phi(m)^k*m) for all k >= 1. - Max Alekseyev, Dec 03 2024

Examples

			96 is a term since 96^2 = phi(96*288), with m=288 where phi(288) = 96.
		

Crossrefs

Subsequence of A002202.

Programs

  • PARI
    isok(n) = {my(iv = invphi(n)); if (#iv, for (m = 1, #iv, if (n^2 == eulerphi(n*iv[m]), return (1)););); return (0);} \\ using the invphi script by Max Alekseyev; Michel Marcus, Nov 01 2017

Extensions

More terms from Michel Marcus, Oct 24 2017
Definition simplified by Max Alekseyev, Dec 03 2024

A152000 a(n) is squarefree and such that for every prime p|a(n) and every prime q|p-1 then q|a(n) holds.

Original entry on oeis.org

2, 6, 10, 30, 34, 42, 78, 102, 110, 114, 170, 210, 222, 330, 390, 410, 438, 510, 514, 546, 570, 582, 654, 714, 798, 930, 978, 1010, 1110, 1158, 1218, 1230, 1326, 1482, 1542, 1554, 1806, 1830, 1870, 1938, 2190, 2310, 2510, 2530
Offset: 1

Views

Author

J. Luis, A. Yebra and J. Jimenez Urroz, Nov 19 2008

Keywords

Comments

a(n) is a squarefree valid base.
Numbers m > 1 such that m equals A007947(A002618(m)). - Jon Maiga, Aug 08 2019

Crossrefs

Programs

  • Maple
    A152000 := proc(n)
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if issqrfree(a) then
                    pdvs := numtheory[factorset](a) ;
                    aworks := true;
                    for p in numtheory[factorset](a) do
                        for q in numtheory[factorset](p-1) do
                            if a mod q = 0 then
                                ;
                            else
                                aworks := false;
                            end if;
                        end do:
                    end do:
                    if aworks then
                        return a;
                    end if;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jun 01 2013
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@n);
    Select[Range[2, 2530], # == rad[#*EulerPhi[#]] &] (* Jon Maiga, Aug 08 2019 *)
  • PARI
    is(m) = factorback(factorint(m*eulerphi(m))[, 1]) == m && m > 1; \\ Jinyuan Wang, Aug 08 2019

Extensions

Corrected and extended by Michel Marcus, Jun 01 2013

A294618 a(n) is the number of solutions of x^2 = eulerphi(x * m) where x is A293928(n).

Original entry on oeis.org

2, 2, 3, 1, 4, 2, 5, 1, 1, 4, 6, 3, 3, 5, 1, 7, 6, 4, 1, 7, 1, 3, 1, 8, 10, 5, 1, 1, 9, 3, 8, 4, 1, 9, 1, 13, 1, 7, 4, 3, 1, 12, 5, 14, 1, 7, 1, 1, 2, 10, 2, 18, 1, 1, 1, 9, 9, 3, 1, 5, 1, 14, 7, 22, 3, 1
Offset: 1

Views

Author

Torlach Rush, Nov 05 2017

Keywords

Comments

The valid values of m in the equation are the terms of the sequence A151999 in order.
m is a solution if all squarefree divisors of x also divide m.
The formula is recursive. For example, taking A151999(68) we get the following: 11664=phi(108*324), 1259712=phi(11664*324), 136048896=phi(1259712*324), ...
If a solution exists then x^(k+1) = phi(x^k * m) for a fixed m, and the smallest value of k must be 1. This follows from a|b implies phi(a)|phi(b), and for k >= 1 a^(k-1)|a^k.
The smallest solution where solutions exist are the terms of the sequence A055744 not in order.
The values of phi(m) are the terms of the sequence A068997 not in order.

Examples

			The first 1 is a term since there is only 1 solution when phi(m)=6. The solution is m=18.
The first 5 is a term since there are 5 solutions when phi(m)=16. These are 32, 34, 40, 48, and 60.
From _Michel Marcus_, Nov 08 2017: (Start)
Illustration of first few terms:
   1: [1, 2],
   2: [4, 6],
   4: [8, 10, 12],
   6: [18],
   8: [16, 20, 24, 30],
  12: [36, 42],
  16: [32, 34, 40, 48, 60],
  18: [54],
  20: [50],
  24: [72, 78, 84, 90],
  32: [64, 68, 80, 96, 102, 120],
  ... (End)
		

Crossrefs

Programs

  • PARI
    isok(n) = {iv = invphi(n); if (#iv, return (sum(m=1, #iv, n^2 == eulerphi(n*iv[m])))); return (0);}
    lista(nn) = {for (n=1, nn, if (v = isok(n), print1(v, ", ")););} \\ \\ using the invphi script by Max Alekseyev; Michel Marcus, Nov 07 2017

Formula

0 < (phi(m)^(k+1) = phi(phi(m)^k*m)), k >= 1, m >= 1.
Showing 1-6 of 6 results.