cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055744 Numbers k such that k and phi(k) have the same prime factors.

Original entry on oeis.org

1, 4, 8, 16, 18, 32, 36, 50, 54, 64, 72, 100, 108, 128, 144, 162, 200, 216, 250, 256, 288, 294, 324, 400, 432, 450, 486, 500, 512, 576, 578, 588, 648, 800, 864, 882, 900, 972, 1000, 1014, 1024, 1152, 1156, 1176, 1210, 1250, 1296, 1350, 1458, 1600, 1728, 1764
Offset: 1

Views

Author

Labos Elemer, Jul 11 2000

Keywords

Comments

Contains products of suitable powers of 2 and Fermat primes. For x = 2^u*3^w, phi(x) = 2^u*3^(w-1) with suitable exponents. Analogous constructions are possible with {2,3,7} prime divisors, etc.
From Ivan Neretin, Mar 19 2015: (Start)
Also, numbers k that meet the following criteria for every prime p dividing k:
1. All prime divisors of p-1 must also divide k;
2. If k has no prime divisors of the form m*p+1, and k is divisible by p, then k must be divisible by p^2.
Also, numbers k for which {k, phi(k), phi(phi(k))} is a geometric progression.
(End)
All terms > 1 are even. An even number k is in the sequence iff 2*k is in the sequence. - Robert Israel, Mar 19 2015
For n > 1, the largest prime factor of a(n) has multiplicity >= 2. For all prime factors more than half of the largest prime factor of a(n), the multiplicity differs from 1.
If k = p1^a1 * p2^a2 * ... * pm^am is in the sequence, then so is p1^b1 * p2^b2 * ... * pm^bm for 1 <= i <= m and prime pi and bi >= ai.
If m * p^2 is not in the sequence, for a prime p and some m > 0, then neither is m * p^3. - David A. Corneth, Mar 22 2015
A027748(a(n),j) = A027748(A000010(a(n)),j) for j=1..A001221(a(n)); also numbers k such that k and phi(k) have the same squarefree kernel: A007947(a(n)) = A007947(A000010(a(n))). - Reinhard Zumkeller, Jun 01 2015
Pollack and Pomerance call these numbers "phi-perfect numbers". - Amiram Eldar, Jun 02 2020

Examples

			k = 578 = 2*17*17, phi(578) = 272 = 2*2*2*2*17 with 2 and 17 prime factors, so 578 is a term.
k = 588 = 2*2*3*7*7, phi(588) = 168 = 2*2*2*3*7, so 588 is a term.
k = 264196 = 2*2*257*257, phi(264196) = 512*257 = 131584, so 264196 is a term.
		

Crossrefs

Intersection of A073539 and A151999. - Amiram Eldar, Jun 02 2020
Cf. A007947, A027748, A055742, A173557, A256248, subsequence of A124240.

Programs

  • Haskell
    a055744 n = a055744_list !! (n-1)
    a055744_list = 1 : filter f [2..] where
       f x = all ((== 0) . mod x) (concatMap (a027748_row . subtract 1) ps) &&
             all ((== 0) . mod (a173557 x))
                 (map fst $ filter ((== 1) . snd) $ zip ps $ a124010_row x)
             where ps = a027748_row x
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    select(numtheory:-factorset = numtheory:-factorset @ numtheory:-phi,
    [1, 2*i $ i=1..2000]); # Robert Israel, Mar 19 2015
    isA055744 := proc(n)
        nfs := numtheory[factorset](n) ;
        phinfs := numtheory[factorset](numtheory[phi](n)) ;
        if nfs = phinfs then
            true;
        else
            false;
        end if;
    end proc:
    A055744 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA055744(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Select[Range@ 1800,
    First /@ FactorInteger@ # == First /@ FactorInteger@ EulerPhi@ # &] (* Michael De Vlieger, Mar 21 2015 *)
  • PARI
    is(n)=factor(n)[,1]==factor(eulerphi(n))[,1] \\ Charles R Greathouse IV, Oct 31 2011
    
  • PARI
    is(n)=my(f=factor(n)); f[,1]==factor(eulerphi(f))[,1] \\ Charles R Greathouse IV, May 26 2015
    

Extensions

Corrected and extended by James Sellers, Jul 11 2000

A151999 Numbers k such that every prime that divides phi(k) also divides k.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 32, 34, 36, 40, 42, 48, 50, 54, 60, 64, 68, 72, 78, 80, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 128, 136, 144, 150, 156, 160, 162, 168, 170, 180, 192, 200, 204, 210, 216, 220, 222, 228, 234, 240, 250, 252, 256, 270
Offset: 1

Views

Author

J. Luis A. Yebra and J. Jimenez Urroz (yebra(AT)mat.upc.es), Nov 19 2008

Keywords

Comments

Alternative descriptions:
(a) For every prime p|n and every prime q|p-1 we have q|n;
(b) Numbers n such that radical of phi(n) divides radical of n, where phi is Euler's totient function and radical is the squarefree kernel function.
These numbers are "valid bases".
Numbers n such that radical of phi(n) divides n. - Michel Marcus, Nov 06 2017
Pollack and Pomerance call these numbers "phi-deficient numbers". - Amiram Eldar, Jun 02 2020

Crossrefs

Cf. A007947 (radical of n), A007694 (phi(n) divides n, a subsequence).
Cf. A080400 (radical of phi(n)).
Cf. A152000.

Programs

  • Magma
    [n: n in [1..300] | forall{d: d in PrimeDivisors(EulerPhi(n)) | IsIntegral(n/d)}]; // Bruno Berselli, Nov 04 2017
    
  • Maple
    A151999 := proc(n)
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                pdvs := numtheory[factorset](a) ;
                aworks := true;
                for p in numtheory[factorset](a) do
                    for q in numtheory[factorset](p-1) do
                        if a mod q = 0 then
                            ;
                        else
                            aworks := false;
                        end if;
                    end do:
                end do:
                if aworks then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jun 01 2013
  • Mathematica
    Rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1 + Range[300], Mod[Rad[#], Rad[EulerPhi[#]]]==0 &] (* José María Grau Ribas, Jan 09 2012 *)
  • PARI
    isok(n) = {fp = factor(n); for (i=1, #fp[, 1], fq = factor(fp[i, 1] - 1); for (j=1, #fq[, 1], if (n % fq[j, 1], return (0)););); return (1);} \\ Michel Marcus, Jun 01 2013
    
  • PARI
    isok(n) = (n % factorback(factor(eulerphi(n))[, 1])) == 0; \\ Michel Marcus, Nov 04 2017
    
  • Sage
    for n in range(1, 271):
        if euler_phi(n)**2 == euler_phi(euler_phi(n) * n): print(n, end=', ') # Torlach Rush, Oct 01 2024

Extensions

Corrected by Michel Marcus, Jun 01 2013
Edited by N. J. A. Sloane, Jun 02 2013 at the suggestion of Michel Marcus, merging this with A204010
Deleted erroneous comment and added correct b-file by Paolo P. Lava, Nov 06 2017

A090779 Numbers k that divide phi(k)^2.

Original entry on oeis.org

1, 4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 81, 98, 100, 108, 121, 125, 128, 144, 147, 162, 169, 196, 200, 216, 225, 242, 243, 250, 256, 288, 289, 294, 324, 338, 343, 361, 392, 400, 432, 441, 450, 484, 486, 500, 507, 512, 529, 576, 578, 588, 605, 625
Offset: 1

Views

Author

Benoit Cloitre, Feb 08 2004

Keywords

Comments

Coincides with A073539 in the first 850000 terms and possibly more. - R. J. Mathar, Sep 08 2008

Programs

  • Mathematica
    Select[Range[1000], Divisible[EulerPhi[#]^2,#]&] (* Vaclav Kotesovec, Feb 16 2019 *)

Formula

a(n) seems to be asymptotic to c*n^2 with c = 0.1....

A230400 Numbers n such that n = abc = 2(ab+ac+bc) for some positive integers a,b,c.

Original entry on oeis.org

216, 250, 256, 288, 400, 432, 450, 486, 576, 882
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2013

Keywords

Comments

Otherwise said: Volumes of integer-sided cubes equal to their surface area (assuming dimensionless unit of length).
The sequence is a finite subsequence of A055744, A069167, A073539, A090779 and A137845.

Examples

			The triples (a,b,c) ordered by largest member(s) are (6,6,6), (8,8,4), (10,5,5), (12,6,4), (12,12,3), (15,10,3), (18,9,3), (20,5,4), (24,8,3), (42,7,3).
		

Crossrefs

Cf. A229941.

Programs

  • PARI
    L=[];for(a=1,99,for(b=1,a,for(c=1,b,a*b*c==2*(a*b+b*c+a*c)&&!printf("(%d,%d,%d), ",a,b,c)&&L=concat(L,a*b*c))));vecsort(L)

A280936 Numbers k such that phi(k) = rad(k) * sopfr(k), where phi(k) is the Euler totient function of k, rad(k) the squarefree kernel of k and sopfr(k) the integer log of k.

Original entry on oeis.org

288, 1225, 4116, 35378, 54450, 1693776, 5969418, 9396618, 24509696310, 246465324525, 5876919827760, 71516027973936, 89547553939440, 370544528449590, 4014732589250736, 565869696542012100
Offset: 1

Views

Author

Paolo P. Lava, Jan 11 2017

Keywords

Comments

If p is the largest prime divisor of a term k, then p^2 divides k. - Max Alekseyev, Feb 03 2024

Examples

			Prime factors of 288 are 2, 2, 2, 2, 2, 3, 3. Then phi(288) = 96, rad(288) = 2 * 3 = 6, sopfr(288) = 2 + 2 + 2 + 2 + 2 + 3 + 3 = 16 and 6 * 16 = 96.
		

Crossrefs

Subsequence of A073539.

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=ifactors(n)[2];
    if phi(n)=mul(a[k][1],k=1..nops(a))*add(a[k][1]*a[k][2],k=1..nops(a)) then print(n);
    fi; od; end: P(10^9);

Extensions

a(9)-a(16) from Max Alekseyev, Feb 03 2024
Showing 1-5 of 5 results.