A369951 Volumes of integer-sided cuboids in which either the surface area divides the volume or vice versa (assuming dimensionless unit of length).
1, 2, 4, 8, 16, 18, 27, 32, 36, 216, 250, 256, 288, 400, 432, 450, 486, 576, 882, 1728, 1800, 1944, 2000, 2048, 2304, 2744, 2916, 3200, 3456, 3528, 3600, 3888, 4608, 6144, 6174, 6750, 6912, 7056, 7200, 7350, 7776, 7986, 8000, 8100, 8232, 9000, 9216, 9600, 9800
Offset: 1
Examples
a(9) = 36, because V = 6*3*2 = 36 and S = 2*(6*3+3*2+6*2) = 72 and S/V = 2. a(12) = 256, because V = 8*8*4 = 256 and S = 2*(8*8+8*4+8*4) = 256 and S=V. a(20) = 1728, because V = 12*12*12 = 1728 and S = 6*12*12 = 864 and V/S = 2.
Programs
-
Maple
A369951 := proc(V) local a, b, c, k; for a from ceil(V^(1/3)) to V do if V/a = floor(V/a) then for b from ceil(sqrt(V/a)) to floor(V/a) do c := V/(a*b); if c = floor(c) then k := 2*(a*b + c*b + a*c)/(a*b*c); if k = floor(k) or 1/k = floor(1/k) then return V; end if; end if; end do; end if; end do; end proc; seq(A369951(V), V = 1 .. 10000);
Formula
For 10 <= n <= 19, a(n) = A230400(n - 9).
Comments