cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A278021 Numbers n such that n - lambda(n) is prime, where lambda = A002322.

Original entry on oeis.org

4, 9, 15, 25, 33, 35, 49, 65, 69, 77, 87, 91, 95, 115, 119, 121, 123, 143, 159, 169, 185, 187, 215, 221, 247, 249, 255, 259, 267, 287, 289, 295, 299, 319, 323, 329, 339, 341, 361, 365, 377, 393, 395, 407, 413, 415, 427, 437, 455, 473, 485, 511, 515, 519
Offset: 1

Views

Author

Robert Israel, Nov 08 2016

Keywords

Comments

All terms are composite.
4 is the only even term.
For odd primes p, 3*p is a term iff p is in A005384.

Examples

			25-lambda(25) = 25-20 = 5 is prime so 25 is in the sequence.
		

Crossrefs

Contains A001248. Contained in union of A001248 and A024556.

Programs

  • Maple
    select(t -> isprime(t - numtheory:-lambda(t)), [$1..10000]);

Formula

A010051(n - A002322(n)) = 1.

A277254 Numbers k such that p = k - phi(k) < q = k - lambda(k), and p and q are both primes, where phi(k) = A000010(k) and lambda(k) = A002322(k).

Original entry on oeis.org

15, 33, 35, 65, 77, 87, 91, 95, 119, 123, 143, 185, 215, 221, 247, 255, 259, 287, 329, 341, 377, 395, 407, 427, 437, 455, 473, 485, 511, 515, 537, 573, 595, 635, 705, 713, 717, 721, 749, 767, 779, 793, 795, 803, 805, 815, 817, 843, 869, 871, 885, 899, 923, 965, 1001
Offset: 1

Views

Author

Thomas Ordowski, Oct 07 2016

Keywords

Comments

Numbers k such that p = A051953(k) < q = A277127(k), and p and q are both primes.
If k is such number, then b^p == b^q (mod k) for every integer b.
Problem: are there infinitely many such numbers?
Suppose p^2 divides k. Then p divides k - phi(k), and so the only way k - phi(k) can be prime is if k = p^2. But then k - phi(k) = k - A002322(k). Hence all terms in this sequence are squarefree. - Charles R Greathouse IV, Oct 08 2016
All terms are odd composites. - Robert Israel, Oct 09 2016
It seems that gpf(k) < p = k - phi(k). - Thomas Ordowski, Oct 09 2016

Examples

			For n=15, A051953(15) = 7, A277127(15) = 11, 7 < 11 and both are primes, thus 15 is included in the sequence.
		

Crossrefs

Subsequence of A033949 and of A024556.

Programs

  • Maple
    filter:= proc(n) uses numtheory;
      local p,q;
      p:= n-phi(n);
      q:= n-lambda(n);
      pRobert Israel, Oct 09 2016
  • Mathematica
    Select[Range[10^3], And[#1 < #2, Times @@ Boole@ PrimeQ@ {#1, #2} == 1] & @@ {# - EulerPhi@ #, # - CarmichaelLambda@ #} &] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    is(n)=my(f=factor(n),p=n-eulerphi(f),q=n-lcm(znstar(f)[2])); p < q && isprime(p) && isprime(q) \\ Charles R Greathouse IV, Oct 08 2016

Extensions

More terms from Altug Alkan, Oct 07 2016

A277312 Smallest k such that k - lambda(k) = prime(n), where lambda(k) = A002322(k).

Original entry on oeis.org

4, 9, 25, 49, 15, 169, 289, 361, 33, 841, 961, 1369, 1681, 1849, 69, 65, 87, 3721, 4489, 115, 5329, 91, 123, 7921, 9409, 10201, 10609, 159, 11881, 12769, 16129, 215, 18769, 19321, 185, 22801, 24649, 26569, 249, 221, 267, 32761, 329, 37249, 38809, 39601, 247, 259, 339, 52441
Offset: 1

Views

Author

Thomas Ordowski, Oct 09 2016

Keywords

Comments

a(n) is the smallest k such that A277127(k) = A000040(n).
a(n) <= prime(n)^2, because p^2 - lambda(p^2) = p prime.
Conjecture: a(n) = prime(n)^2 for infinitely many n.
For n > 1, a(n) is an odd composite. - Robert Israel, Oct 14 2016

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    A:= Vector(N):
    A[1]:= 4:
    count:= 1:
    for k from 9 by 2 while count < N do
      r:= k - numtheory:-lambda(k);
      if isprime(r) then
        n:= numtheory:-pi(r);
        if n <= N and A[n] = 0 then
          count:= count+1;
          A[n]:= k;
        fi
       fi
    od:
    convert(A,list); # Robert Israel, Oct 14 2016
  • Mathematica
    Table[k = 1; While[k - CarmichaelLambda@ k != Prime@ n, k++]; k, {n, 50}] (* Michael De Vlieger, Oct 14 2016 *)
  • PARI
    a(n) = {my(k = 1); while (k - lcm(znstar(k)[2]) != prime(n), k++); k;} \\ Michel Marcus, Oct 09 2016

Extensions

More terms from Altug Alkan, Oct 09 2016

A290281 Numbers k such that (k-1) mod phi(k) = lambda(k), where phi = A000010 and lambda = A002322.

Original entry on oeis.org

6601, 11972017, 34657141, 67902031, 139952671, 258634741, 2000436751, 8801128801, 9116583841, 9462932431, 38069223721, 326170416001, 359316634951, 1860929324101, 2022188518351, 2283475947391, 2648686458601, 2697891108151, 4513362899761, 5020030521001, 5472940991761, 6163867710001, 7507903975951, 19288340548471
Offset: 1

Views

Author

Robert Israel and Thomas Ordowski, Jul 25 2017

Keywords

Comments

Numbers k such that A215486(k) = A002322(k).
Subsequence of the Carmichael numbers (A002997).
Composite numbers k such that (k-1) == lambda(k) (mod phi(k)).
Composite numbers k such that A277127(k) == 1 (mod A000010(k)).
Problem: are there infinitely many such numbers?
Conjecture: these are numbers k such that phi(k) + lambda(k) = k - 1. Checked up to 2^64. - Amiram Eldar and Thomas Ordowski, Dec 06 2019

Crossrefs

Subsequence of A264012.

Programs

  • Maple
    # Using data files for A002997
    count:= 0:
    for cfile in ["carmichael-16","carmichael17","carmichael18"] do
    do
        S:= readline(cfile);
        if S = 0 then break fi;
        L:= map(parse, StringTools:-Split(S));
        n:= L[1]; pm:= map(`-`,L[2..-1],1);
        phin:= convert(pm,`*`);
        lambdan:= ilcm(op(pm));
        if n-1 - lambdan mod phin = 0 then
          count:= count+1; A[count]:= n;
        fi
    od:
       fclose(cfile);
    od:
    seq(A[i],i=1..count); # Robert Israel, Jul 26 2017
  • Mathematica
    Select[Range[10^8], Divisible[# - 1, (lam = CarmichaelLambda[#])] && Mod[# - 1, EulerPhi[#]] == lam &] (* Amiram Eldar, Dec 06 2019 *)

A276674 Numbers n such that x - lambda(x) = n has no solution, where lambda(x) = A002322(x).

Original entry on oeis.org

21, 28, 45, 46, 51, 64, 65, 77, 82, 85, 91, 106, 111, 126, 129, 133, 136, 148, 155, 166, 172, 175, 185, 189, 205, 208, 209, 217, 221, 225, 231, 232, 235, 237, 244, 247, 267, 273, 274, 276, 286, 291, 298, 305, 316, 319, 326, 333, 339, 341, 358, 362, 364, 365, 371
Offset: 1

Views

Author

Thomas Ordowski, Oct 03 2016

Keywords

Comments

Problem: are there infinitely many such numbers?
Note that all these numbers are composite, because p - lambda(p) = 1 and p^2 - lambda(p^2) = p prime.
If x - lambda(x) = n > 1, then x <= n^2.
Conjecture: if x - lambda(x) = 2*m > 0, then x <= 4*m.
Noncototients among these numbers are 172, 232, 244, 274, 298, 326, 362, ...

Crossrefs

Cf. A002322, A005278 (see links). Complement of A277127.

Programs

Extensions

More terms from Michel Marcus, Oct 03 2016

A330446 Composite numbers k such that 2^(k-1) == - lambda(k) (mod k), where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

140, 1054, 1068, 4844, 11209, 19856, 24949, 28390, 78184, 423796, 769516, 4283544, 5935168, 13116053, 122189752, 441252296, 528500308, 636697392, 669629030, 669778082, 1228748591
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Dec 15 2019

Keywords

Comments

Composite numbers k such that A062173(k) = A277127(k).
The odd terms are 11209, 24949, 13116053, ...
Note that if p is an odd prime, then 2^(p-1) == - lambda(p) (mod p), because lambda(p) = p-1.

Examples

			140 is a term since it is composite and 2^(140-1) == 140 - lambda(140) == 128 (mod 140).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], CompositeQ[#] && PowerMod[2, # - 1, #] == # - CarmichaelLambda[#] &]
Showing 1-6 of 6 results.