cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A219792 Least k such that phi(k) = lambda(n), or 0 if there is no such k.

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 3, 7, 5, 11, 3, 13, 7, 5, 5, 17, 7, 19, 5, 7, 11, 23, 3, 25, 13, 19, 7, 29, 5, 31, 15, 11, 17, 13, 7, 37, 19, 13, 5, 41, 7, 43, 11, 13, 23, 47, 5, 43, 25, 17, 13, 53, 19, 25, 7, 19, 29, 59, 5, 61, 31, 7, 17, 13, 11, 67, 17, 23, 13, 71, 7
Offset: 1

Views

Author

Michel Lagneau, Nov 28 2012

Keywords

Comments

lambda(n) is the Carmichael lambda function A002322.
a(n) = 0 for n = 209, 297, 413, 418, 517, ...
If a(n) = p is a prime greater than 2, then n belongs to the finite set {p, p1, p2, ..., pk} that is a subsequence of A143417 (see the b-file in A143417). For example:
a(n) = 3 for n = 3, 4, 6;
a(n) = 5 for n = 5, 10, 15, 16, 20, 30, 40, 48, 60, 80, 120, 240;
a(n) = 7 for n = 7, 9, 14, 18, 21, 28, ..., 480;
a(n) = 11 for n = 11, 22, 33, 44, 66, 88, 132, 264;
a(n) = 13 for n = 13, 26, 35, 39, ..., 65520.

Examples

			a(6) = 3 because phi(3) = lambda(6) = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 100 do: ii:=0:for k from 1 to 10^6 while(ii=0) do:if phi(k)=lambda(n) then ii:=1: printf(`%d, `,k):else fi:od:if ii=0 then printf(`%d, `,0): else fi:od:
  • Mathematica
    Table[k=0;While[!EulerPhi[k]==CarmichaelLambda[n],k++];k,{n,100}]
    Join[{1},Module[{nn=100,ep,lam},ep=Table[{k,EulerPhi[k]},{k,nn}];Table[ SelectFirst[ep,#[[2]]==CarmichaelLambda[n]&],{n,2,nn}]][[All,1]]] (* Harvey P. Dale, Dec 24 2021 *)
  • PARI
    a(n)=my(t=lcm(znstar(n)[2]));if(t>2,for(k=t+1,solve(x=t,2*t^2,x/(exp(Euler)*log(log(x))+3/log(log(x)))-t),if(eulerphi(k)==t,return(k)));0,2*t-1) \\ Charles R Greathouse IV, Nov 28 2012
    
  • PARI
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ This function from M. F. Hasler, Oct 05 2009
    A219792(n) = { my(x=lcm(znstar(n)[2])); if(0==A014197(x),0,for(k=1,oo,if(eulerphi(k)==x,return(k)))); }; \\ Antti Karttunen, Dec 05 2017

Formula

a(n) = A049283(A002322(n)).
Showing 1-1 of 1 results.