A002181 Least number k such that phi(k) = m, where m runs through the values (A002202) taken by phi.
1, 3, 5, 7, 15, 11, 13, 17, 19, 25, 23, 35, 29, 31, 51, 37, 41, 43, 69, 47, 65, 53, 81, 87, 59, 61, 85, 67, 71, 73, 79, 123, 83, 129, 89, 141, 97, 101, 103, 159, 107, 109, 121, 113, 177, 143, 127, 255, 131, 161, 137, 139, 213, 185, 149, 151, 157, 187, 163, 249, 167, 203, 173
Offset: 1
Keywords
References
- J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
- R. K. Guy, Unsolved problems in number theory, B39.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- R. D. Carmichael, A table of the values of m corresponding to given values of phi(m), Amer. J. Math., 30 (1908), 394-400. [Annotated scanned copy]
- T. D. Noe, Numbers Like 16842752.
- William P. Wardlaw, L. L. Foster and R. J. Simpson, Problem E3361, Amer. Math. Monthly, Vol. 98, No. 5 (May, 1991), 443-444.
- K. W. Wegner, Values of phi(x) = n for n from 2 through 1978, mimeographed manuscript, no date [Annotated scanned copy]
Programs
-
Mathematica
With[{ep=EulerPhi[Range[1000]]},Flatten[Table[Position[ep,n,{1},1],{n,200}]]] (* Harvey P. Dale, Apr 10 2015 *)
Formula
Extensions
Offset and initial term corrected Oct 07 2007
Revised definition from T. D. Noe, Aug 14 2008
Comments