cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A000010 Euler totient function phi(n): count numbers <= n and prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
Offset: 1

Views

Author

Keywords

Comments

Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013
From _Eduard I. Vatutin_, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 154-156.
  • C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
  • Paulo Ribenboim, The New Book of Prime Number Records.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 28-33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 162-167.

Crossrefs

Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

Programs

  • Axiom
    [eulerPhi(n) for n in 1..100]
    
  • Haskell
    a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
    
  • Julia
    # Computes the first N terms of the sequence.
    function A000010List(N)
        phi = [i for i in 1:N + 1]
        for i in 2:N + 1
            if phi[i] == i
                for j in i:i:N + 1
                    phi[j] -= div(phi[j], i)
        end end end
    return phi end
    println(A000010List(68))  # Peter Luschny, Sep 03 2023
  • Magma
    [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
    with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2
    # Alternative without library function:
    A000010List := proc(N) local i, j, phi;
        phi := Array([seq(i, i = 1 .. N+1)]);
        for i from 2 to N + 1 do
            if phi[i] = i then
                for j from i by i to N + 1 do
                    phi[j] := phi[j] - iquo(phi[j], i) od
            fi od;
    return phi end:
    A000010List(68);  # Peter Luschny, Sep 03 2023
  • Mathematica
    Array[EulerPhi, 70]
  • Maxima
    makelist(totient(n),n,0,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
    
  • Python
    from sympy.ntheory import totient
    print([totient(i) for i in range(1, 70)])  # Indranil Ghosh, Mar 17 2017
    
  • Python
    # Note also the implementation in A365339.
    
  • Sage
    def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
    
  • Sage
    [euler_phi(n) for n in range(1, 70)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]

A119456 Numbers m such that the Bernoulli number B_{10*m} has denominator 66.

Original entry on oeis.org

1, 5, 17, 37, 47, 59, 61, 67, 71, 73, 79, 85, 101, 107, 127, 137, 139, 149, 163, 167, 185, 197, 199, 223, 227, 229, 257, 263, 269, 277, 283, 289, 295, 305, 307, 311, 313, 317, 331, 335, 347, 353, 355, 365, 373, 379, 383, 389, 395, 397, 401, 433, 449, 457, 461
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

Subset of A002181 (inverse of the Euler totient function).
Most terms are primes except for n = 12, 21, 32, 33, 34, 40, ... because a(12) = 85 = 5*17, a(21) = 185 = 5*37, a(32) = 289 = 17*17, a(33) = 295 = 5*59, a(34) = 305 = 5*61, a(40) = 335 = 5*67, ... Each composite term appears to be a product of two primes from previous terms or a square of a prime from previous terms.
Composite terms are the products of powers of primes that are factors of previous terms. For example, there are terms equal to 17, 17^2, 5*17^2, 59^2, 59*61, 61^2, 61*67, 67^2, 67*73, 17^3, 5*17*59, 71*73, 5*17*61, 73^2, 71*79, 73*79, 5*17*73, 79^2, 61*167, 101^2, 37*277, 5*37*59, 79*139, 107^2, 5*17*139, 5*37*67, 5*37*71, 17^2*47, 61*223, 61*227, 5*17*163, 5*17*167, 71*227, 127^2, 17^2*59, 5*59^2, 17^2*61, 5*61^2, 137^2, 137*139, 139^2, 17^2*67, 5*17*229, 137*149, 5*61*67, 5*59*71, 17^2*73, 5*67^2, 5*61*79, 5*67*73, 5*17^3, ... - Alexander Adamchuk, Jul 28 2006

Crossrefs

Programs

  • Mathematica
    Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 11}], Print[n/10]], {n, 1, 50000}] (* Alexander Adamchuk, Jul 28 2006 *)
  • PARI
    isok(m) = denominator(bernfrac(10*m)) == 66; \\ Michel Marcus, May 31 2022

Formula

a(n) = A051230(n)/10 = A051229(n)/5.

Extensions

More terms from Alexander Adamchuk, Jul 28 2006

A006511 Largest inverse of totient function (A000010): a(n) is the largest x such that phi(x) = m, where m = A002202(n) is the n-th number in the range of phi.

Original entry on oeis.org

2, 6, 12, 18, 30, 22, 42, 60, 54, 66, 46, 90, 58, 62, 120, 126, 150, 98, 138, 94, 210, 106, 162, 174, 118, 198, 240, 134, 142, 270, 158, 330, 166, 294, 276, 282, 420, 250, 206, 318, 214, 378, 242, 348, 354, 462, 254, 510, 262, 414, 274, 278, 426, 630, 298, 302
Offset: 1

Views

Author

Keywords

Comments

Always even, as phi(2n) = phi(n) when n is odd. - Alain Jacques (thegentleway(AT)bigpond.com), Jun 15 2006

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For records see A036913, A132154, A036912.

Programs

  • Mathematica
    phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl=={}, Return[If[n==1, {1}, {}]]]; val={}; p=Last[pl]; For[e=0; pe=1, e==0||Mod[n, (p-1)pe/p]==0, e++; pe*=p, val=Join[val, pe*phiinv[If[e==0, n, n*p/pe/(p-1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1+Divisors[n], PrimeQ]]; Last/@Select[phiinv/@Range[1, 200], #!={}&] (* phiinv[n, pl] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[n] = list of x with phi(x)=n *)
  • PARI
    g(n) = if(n%2, 2*(n==1), forstep(k = floor(exp(Euler)*n*log(log(n^2))+2.5*n/log(log(n^2))), n, -1, if(eulerphi(k)==n, return(k)); if(k==n, return(0)))); \\ A057635
    lista(nn) = for(m = 1, nn, if(istotient(m), print1(g(m), ", "))); \\ Jinyuan Wang, Aug 29 2019
    
  • PARI
    lista(nmax) = my(s); for(n = 1, nmax, s = invphiMax(n); if(s > 0, print1(s, ", "))); \\ Amiram Eldar, Nov 14 2024, using Max Alekseyev's invphi.gp
  • Perl
    use ntheory ":all"; my $k=1; for my $i (1..100) { my @v; do{@v=inverse_totient($k++)} until @v; print "$i $v[-1]\n"; } # Dana Jacobsen, Mar 04 2019
    

Formula

a(n) = A057635(A002202(n)). - T. D. Noe

A061026 Smallest number m such that phi(m) is divisible by n, where phi = Euler totient function A000010.

Original entry on oeis.org

1, 3, 7, 5, 11, 7, 29, 15, 19, 11, 23, 13, 53, 29, 31, 17, 103, 19, 191, 25, 43, 23, 47, 35, 101, 53, 81, 29, 59, 31, 311, 51, 67, 103, 71, 37, 149, 191, 79, 41, 83, 43, 173, 69, 181, 47, 283, 65, 197, 101, 103, 53, 107, 81, 121, 87, 229, 59, 709, 61, 367, 311, 127, 85
Offset: 1

Views

Author

Melvin J. Knight (knightmj(AT)juno.com), May 25 2001

Keywords

Comments

Conjecture: a(n) is odd for all n. Verified up to n <= 3*10^5. - Jianing Song, Feb 21 2021
The conjecture above is false because a(16842752) = 33817088; see A002181 and A143510. - Flávio V. Fernandes, Oct 08 2023

Examples

			a(48) = 65 because phi(65) = phi(5)*phi(13) = 4*12 = 48 and no smaller integer m has phi(m) divisible by 48.
		

Crossrefs

Cf. A233516, A233517 (records).
Cf. A005179 (analog for number of divisors), A070982 (analog for sum of divisors).

Programs

  • Mathematica
    a = ConstantArray[1, 64]; k = 1; While[Length[vac = Rest[Flatten[Position[a, 1]]]] > 0, k++; a[[Intersection[Divisors[EulerPhi[k]], vac]]] *= k]; a  (* Ivan Neretin, May 15 2015 *)
  • PARI
    a(n) = my(s=1); while(eulerphi(s)%n, s++); s;
    vector(100, n, a(n))
    
  • Python
    from sympy import totient as phi
    def a(n):
      k = 1
      while phi(k)%n != 0: k += 1
      return k
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Feb 21 2021

Formula

Sequence is unbounded; a(n) <= n^2 since phi(n^2) is always divisible by n.
If n+1 is prime then a(n) = n+1.
a(n) = min{ k : phi(k) == 0 (mod n) }.
a(n) = a(2n) for odd n > 1. - Jianing Song, Feb 21 2021

A057826 Greatest number with totient 2n (or zero when no such number exists).

Original entry on oeis.org

6, 12, 18, 30, 22, 42, 0, 60, 54, 66, 46, 90, 0, 58, 62, 120, 0, 126, 0, 150, 98, 138, 94, 210, 0, 106, 162, 174, 118, 198, 0, 240, 134, 0, 142, 270, 0, 0, 158, 330, 166, 294, 0, 276, 0, 282, 0, 420, 0, 250, 206, 318, 214, 378, 242, 348, 0, 354, 0, 462, 0, 0, 254, 510
Offset: 1

Views

Author

Robert G. Wilson v, Nov 08 2000

Keywords

Comments

If a(n) = 0, n is a nontotient number - see (A005277)/2.

Crossrefs

Bisection of A057635. Cf. A000010, A005277, A002181.

Programs

  • Mathematica
    a = Table[0, {100}]; Do[ t = EulerPhi[n]/2; If[t < 101, a[[t]] = n], {n, 1, 10^3}]; a
  • PARI
    a(n) = invphiMax(2*n); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

A063507 Least k such that k - phi(k) = n, or 0 if no such k exists.

Original entry on oeis.org

2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, 235, 0, 329, 78, 159, 98, 105, 0, 371, 84, 177, 122, 135, 96, 305, 90, 427
Offset: 1

Views

Author

Labos Elemer, Aug 09 2001

Keywords

Comments

Inverse cototient (A051953) sets represented by their minimum, as in A002181 for totient function. Impossible values (A005278) are replaced by zero.
If a(n) > 0, then it appears that a(n) > 1.26n. - T. D. Noe, Dec 06 2006

Examples

			x = InvCototient[24] = {36, 40, 44, 46}; Phi[x] = Phi[{36, 40, 44, 46}] = {12, 16, 20, 22}; x-Phi[x] = {24, 24, 24, 24}, so a(24) = Min[InvCototient[24]]; a(10) = 0 because 10 is in A005278.
		

Crossrefs

Cf. A063748 (greatest solution to x-phi(x)=n).
Cf. A063740 (number of k such that cototient(k) = n).

Programs

  • Mathematica
    Table[SelectFirst[Range[n^2 + 1], # - EulerPhi[#] == n &] /. k_ /; ! IntegerQ@ k -> 0, {n, 67}] (* Michael De Vlieger, Jan 11 2018 *)

Formula

a(n)-A051953(a(n)) = n if possible and a(n)=0 if n belongs to A005278.

Extensions

Edited by N. J. A. Sloane, Oct 25 2008 at the suggestion of R. J. Mathar

A015126 Least k such that phi(k) = phi(n).

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 5, 7, 5, 11, 5, 13, 7, 15, 15, 17, 7, 19, 15, 13, 11, 23, 15, 25, 13, 19, 13, 29, 15, 31, 17, 25, 17, 35, 13, 37, 19, 35, 17, 41, 13, 43, 25, 35, 23, 47, 17, 43, 25, 51, 35, 53, 19, 41, 35, 37, 29, 59, 17, 61, 31, 37, 51, 65, 25, 67, 51, 69, 35, 71, 35, 73
Offset: 1

Views

Author

Vladeta Jovovic, Jan 12 2002

Keywords

Comments

From Jianing Song, Nov 11 2022: (Start)
The first even term is a(33817088) = 16842752 (see A002181 and A143510).
Conjecture: a(n) is always odd for odd n. (End)

Crossrefs

Programs

  • PARI
    a(n) = {my(en = eulerphi(n)); k = 1; while (eulerphi(k) != en, k++); return (k);} \\ Michel Marcus, Jun 17 2013
    
  • PARI
    a(n) = vecmin(select(x -> x<=n, invphi(eulerphi(n)))); \\ Amiram Eldar, Nov 14 2024, using Max Alekseyev's invphi.gp

A035113 Numbers != 2 (mod 4) listed in order of increasing totient function phi (A000010).

Original entry on oeis.org

1, 3, 4, 5, 8, 12, 7, 9, 15, 16, 20, 24, 11, 13, 21, 28, 36, 17, 32, 40, 48, 60, 19, 27, 25, 33, 44, 23, 35, 39, 45, 52, 56, 72, 84, 29, 31, 51, 64, 68, 80, 96, 120, 37, 57, 63, 76, 108, 41, 55, 75, 88, 100, 132, 43, 49, 69, 92, 47, 65, 104, 105, 112, 140, 144
Offset: 1

Views

Author

Keywords

Examples

			phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...
		

Crossrefs

Programs

  • Python
    from sympy import totient as A000010
    def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])
    print([x[1] for x in lov(200)][:100]) # Dumitru Damian, Feb 01 2022

Extensions

More terms from James Sellers
a(43) onward corrected by Sean A. Irvine, Sep 26 2020

A035114 Values of phi(n) corresponding to A035113.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8, 8, 10, 12, 12, 12, 12, 16, 16, 16, 16, 16, 18, 18, 20, 20, 20, 22, 24, 24, 24, 24, 24, 24, 24, 28, 30, 32, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36, 40, 40, 40, 40, 40, 40, 42, 42, 44, 44, 46, 48, 48, 48, 48, 48, 48, 48, 48, 48
Offset: 1

Views

Author

Keywords

Examples

			phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...
		

Crossrefs

Programs

  • Python
    from sympy import totient as A000010
    def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])
    print([x[0] for x in lov(200)][:100]) # Dumitru Damian, Feb 03 2022

Formula

a(n) = A000010(A035113(n)). - Michel Marcus, Feb 07 2022

Extensions

More terms from James Sellers
a(43) onward corrected by Sean A. Irvine, Sep 26 2020

A051445 Smallest k such that phi(k) = 2n, or 0 if there is no such k.

Original entry on oeis.org

3, 5, 7, 15, 11, 13, 0, 17, 19, 25, 23, 35, 0, 29, 31, 51, 0, 37, 0, 41, 43, 69, 47, 65, 0, 53, 81, 87, 59, 61, 0, 85, 67, 0, 71, 73, 0, 0, 79, 123, 83, 129, 0, 89, 0, 141, 0, 97, 0, 101, 103, 159, 107, 109, 121, 113, 0, 177, 0, 143, 0, 0, 127, 255, 131, 161, 0, 137
Offset: 1

Views

Author

Keywords

Comments

The zero values are easy to prove because of the bounds on the phi function.

Examples

			a(4) = 15 as phi(15) = 2*4 and no k < 15 has phi(k) = 2*4.
		

Crossrefs

Cf. A002181, A072075, A079695. For records see A132012, A132115.

Programs

  • PARI
    a(n)=n+=n;for(k=n+1, solve(x=n,if(n<20,99,5*n*log(log(n))), x/(exp(Euler)*log(log(x))+3/log(log(x)))-n), if(eulerphi(k)==n,return(k))); 0 \\ Charles R Greathouse IV, Dec 19 2011

Formula

a(10^n/2) = A072075(n). - R. J. Mathar, Dec 12 2024
a(A079695(n)) = 0. - David A. Corneth, Dec 12 2024
Showing 1-10 of 18 results. Next