A067005 Totient of A061026(n) divided by n.
1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 10, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 1, 10, 1, 2, 3, 2, 1, 4, 5, 2, 1, 2, 1, 4, 1, 4, 1, 6, 1, 4, 2, 2, 1, 2, 1, 2, 1, 4, 1, 12, 1, 6, 5, 2, 1, 2, 1, 4, 2, 2, 1, 8, 1, 4, 2, 2, 3, 6, 1, 4, 1, 2, 1, 2, 1, 12, 2, 4, 1, 2, 2, 6, 1, 4, 3, 2, 1, 4, 2, 2, 1
Offset: 1
Keywords
Examples
n = 24: a(24) = 1 = phi(A061026(24))/24 = phi(35)/24 = 24/24; n = 85: a(85) = 12 = phi(A061026(85))/85 = 1020/85.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Zak Seidov)
Programs
-
Mathematica
Table[m = 1; While[! Divisible[Set[k, EulerPhi@ m], n], m++]; k/n, {n, 100}] (* Michael De Vlieger, Mar 18 2017 *)
-
PARI
for(n=1,100, s=1; while((e=eulerphi(s))%n>0, s++); print1(e/n ", ")); \\ Zak Seidov, Feb 22 2014
-
PARI
list(len) = {my(v = vector(len), c = 0, k = 1, e); while(c < len, e = eulerphi(k); fordiv(e, d, if(d <= len && v[d] == 0, v[d] = e/d; c++)); k++); v; } \\ Amiram Eldar, Mar 08 2025
-
Python
from sympy.ntheory import totient def k(n): m=1 while totient(m)%n: m+=1 return m print([totient(k(n))//n for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017
Formula
a(n) = A066678(n)/n. - Amiram Eldar, Mar 08 2025
Comments