A002220 a(n) is the number of partitions of 3n that can be obtained by adding together three (not necessarily distinct) partitions of n.
1, 4, 10, 30, 65, 173, 343, 778, 1518, 3088, 5609, 10959, 18990, 34441, 58903, 102044, 167499, 282519, 451529, 737208, 1160102, 1836910, 2828466, 4410990, 6670202, 10161240, 15186315, 22758131, 33480869
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Apr 20 2024: (Start) The a(1) = 1 through a(3) = 10 triquanimous partitions: (111) (222) (333) (2211) (3321) (21111) (32211) (111111) (33111) (222111) (321111) (2211111) (3111111) (21111111) (111111111) (End)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376.
Crossrefs
Extensions
Edited by N. J. A. Sloane, Jun 03 2012
a(12)-a(20) from Alois P. Heinz, Jul 10 2012
a(21)-a(29) from Sean A. Irvine, Sep 05 2013