cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002223 Smallest prime p of form p = 8k-1 such that first n primes (p_1=2, ..., p_n) are quadratic residues mod p.

Original entry on oeis.org

7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 366791, 366791, 4080359, 12537719, 30706079, 36415991, 82636319, 120293879, 120293879, 131486759, 131486759, 2929911599, 2929911599, 7979490791, 33857579279
Offset: 1

Views

Author

Keywords

Examples

			12^2 = 2 mod 71, 28^2 = 3 mod 71, 17^2 = 5 mod 71.
		

References

  • N. D. Bronson and D. A. Buell, Congruential sieves on FPGA computers, pp. 547-551 of Mathematics of Computation 1943-1993 (Vancouver, 1993), Proc. Symp. Appl. Math., Vol. 48, Amer. Math. Soc. 1994.
  • D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XV.

Crossrefs

Programs

  • Mathematica
    np[] := While[p = NextPrime[p]; Mod[p, 8] != 7]; p = 2; A002223 = {}; pp = {2}; np[]; While[ Length[A002223] < 26, If[Union[ JacobiSymbol[#, p] &[pp]] === {1}, AppendTo[pp, NextPrime[Last[pp]]]; Print[p]; AppendTo[A002223, p], np[]]]; A002223 (* Jean-François Alcover, Sep 09 2011 *)

Extensions

The Bronson-Buell reference gives terms through 227.
More terms from Don Reble, Sep 19 2001

A002225 a(n) is the smallest prime p such that each of the first n primes has three cube roots mod p.

Original entry on oeis.org

31, 307, 643, 5113, 21787, 39199, 360007, 360007, 4775569, 10318249, 10318249, 65139031, 387453811, 913900417, 2278522747, 2741702809, 25147657981, 118748663779, 156776294593, 747206701687, 1151810360731, 1151810360731, 1151810360731
Offset: 1

Views

Author

Keywords

Comments

a(n) is the smallest prime p == 1 (mod 3) such that each of the first n primes is a cubic residue mod p. - Robert Israel, Aug 02 2016

Examples

			For n = 2, the first two primes 2 and 3 each have three cube roots mod 307: 2 has cube roots 52, 270, 292 and 3 has cube roots 192, 194, 228. - _Robert Israel_, Aug 02 2016
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XVI.

Crossrefs

Smallest prime p such that each of the first n primes has q q-th roots mod p: A147972 (q=2), this sequence (q=3), A002226 (q=5), A002227 (q=7), A002228 (q=11), A060363 (q=13), A060364 (q=17).
Subset of A014752. Except for a(1), subset of A014753. Except for a(1) and a(2), subset of A040044.

Programs

  • Maple
    Primes:= [2]: pp:= 7:
    for n from 1 to 12 do
      for p from pp by 6 while
        not(isprime(p) and andmap(t -> t &^ ((p-1)/3) mod p = 1, Primes))
      do od:
      A[n]:= p;
      pp:= p;
      Primes:= [op(Primes), nextprime(Primes[-1])];
    od:
    seq(A[i],i=1..12); # Robert Israel, Aug 02 2016
  • Mathematica
    (* This naive program being very slow, limit is set to 8 terms *) lim=8; np[] := While[p=NextPrime[p]; Mod[p,3]!=1]; crQ[n_, p_] := Reduce[ 0A002225={}; While[Length[A002225] < lim, If[And @@ (crQ[#,p]& /@ pp), AppendTo[pp, NextPrime[ Last[pp]]]; Print[p]; AppendTo[A002225,p], np[] ] ]; A002225 (* Jean-François Alcover, Sep 09 2011 *)

Extensions

More terms from Don Reble, Oct 09 2001
Name corrected by Robert Israel, Aug 02 2016
a(18)-a(23) from Sergey Paramonov, Apr 11 2024

A147971 Indices of the records in the sequence of smallest positive quadratic nonresidues (A053760).

Original entry on oeis.org

1, 4, 9, 20, 64, 92, 246, 752, 1289, 2084, 3383, 31284, 271259, 618525, 1389315, 2228197, 2914847, 6857528, 7457772, 141236709, 366883983, 1034128714, 3690981956, 4965932454, 7863515482, 19824941433, 195348751601, 292557888940, 2296552237422
Offset: 1

Views

Author

Max Alekseyev, Nov 18 2008

Keywords

Comments

The corresponding primes are listed in A147970.

Crossrefs

Formula

Positive integer n is in this sequence iff A053760(k) < A053760(n) for every k

Extensions

a(20)-a(29) from Charles R Greathouse IV, Apr 06 2012

A002226 Smallest prime p such that first n primes (p_1=2, ..., p_n) are quintic residues mod p.

Original entry on oeis.org

151, 431, 6581, 67651, 241981, 2081921, 3395921, 116900011, 650086271, 858613901, 11736494711, 50888057851, 303855349271, 2459339487751, 3167880361091
Offset: 1

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XXIII.

Crossrefs

Extensions

More terms from Don Reble, Oct 10 2001
a(13)-a(15) from Sergey Paramonov, Apr 08 2024

A002227 Smallest prime p such that first n primes (p_1=2, ..., p_n) are 7th power residues mod p.

Original entry on oeis.org

631, 5531, 72661, 865957, 2375059, 32353609, 175175603, 945552637, 945552637, 54144188771, 688203780167, 2701344818803
Offset: 1

Keywords

Comments

a(13) > 2^42. - Sergey Paramonov, Apr 12 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XXIII.

Crossrefs

Extensions

More terms from Don Reble, Oct 12 2001
a(11)-a(12) from Sergey Paramonov, Apr 12 2024

A094928 Let p = n-th prime == 1 mod 8 (A007519); a(n) = smallest prime q such that p is not a square mod q.

Original entry on oeis.org

3, 3, 5, 3, 5, 3, 3, 5, 3, 7, 3, 3, 5, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 3, 3, 5, 3, 7, 3, 3, 3, 3, 5, 3, 3, 11, 5, 3, 3, 11, 5, 3, 11, 3, 7, 3, 5, 7, 3, 3, 3, 3, 7, 3, 3, 7, 5, 3, 3, 5, 5, 11, 5, 3, 3, 5, 5, 3, 7, 5, 3, 5, 3, 7, 3, 7, 3, 5, 3, 3, 3, 5, 11, 5, 3, 5, 3, 3, 13, 5, 3, 3, 3, 3, 5, 5, 3, 5, 3, 7
Offset: 1

Author

N. J. A. Sloane, Jun 19 2004

Keywords

Examples

			n=3, p = 73, a(3) = q = 5: Legendre(73,5) = -1.
		

References

  • M. Kneser, Quadratische Formen, Springer, 2002; see Hilfssatz 18.3.

Crossrefs

Subsequence of A094929.

Programs

  • Maple
    f:= proc(p) local q;
         q:= 3:
         do
          if numtheory:-quadres(p,q) = -1 then return q fi;
          q:= nextprime(q);
         od;
    end proc:
    map(f, select(isprime, [seq(p,p=1..10000,8)])); # Robert Israel, May 06 2019
  • Mathematica
    f[n_] := Prime[ Position[ JacobiSymbol[n, Select[Range[3, n - 1], PrimeQ[ # ] &]], -1][[1, 1]] + 1]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 1 &] (* Robert G. Wilson v, Jun 23 2004 *)

Formula

a(n) = A094929(A269704(n)). - Robert Israel, May 06 2019

Extensions

More terms from Robert G. Wilson v, Jun 23 2004

A147969 Smallest prime p modulo which numbers 1,2,...,n are quadratic residues.

Original entry on oeis.org

2, 7, 23, 23, 71, 71, 311, 311, 311, 311, 479, 479, 1559, 1559, 1559, 1559, 5711, 5711, 10559, 10559, 10559, 10559, 18191, 18191, 18191, 18191, 18191, 18191, 31391, 31391, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791
Offset: 1

Author

Max Alekseyev, Nov 18 2008

Keywords

Comments

The same primes without repetitions are listed in A147970.

Programs

  • PARI
    a(n)=forprime(p=2,default(primelimit),forprime(i=2,n, if(kronecker(i,p)<1,next(2)));return(p)) \\ Charles R Greathouse IV, Apr 06 2012

A205532 Primes at which occur records of A205531 and A205535.

Original entry on oeis.org

2, 13, 61, 109, 1009, 2689, 8089, 33049, 53881, 87481, 483289, 515761, 1083289, 3818929, 9257329
Offset: 1

Author

M. F. Hasler, Jan 28 2012

Keywords

Comments

Related to the 4.X Selfridge Conjecture by P. Underwood, cf. link.
Records occur at [A205532(n), A205534(n)] = [2, 1], [13, 3], [61, 5], [109, 6], [1009, 9], [2689, 11], [8089, 15], [33049, 17], [53881, 21], [87481, 27], [483289, 29], [515761, 35], [1083289, 39], [3818929, 45], [9257329, 51],...
It appears that a(n)=A102295(n+1) for n>4; they are also terms of A002224 and A096637.

Programs

  • PARI
    m=-1; forprime(p=1,default(primelimit), if(m+0A205535(p),m), print1(p",")))

A147970 Primes corresponding to the records in the sequence of smallest positive quadratic nonresidues (A053760).

Original entry on oeis.org

2, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 131486759, 2929911599, 7979490791, 23616331489, 89206899239, 121560956039, 196265095009, 513928659191, 5528920734431, 8402847753431, 70864718555231
Offset: 1

Author

Max Alekseyev, Nov 18 2008

Keywords

Formula

Prime p=A000040(n) is in this sequence iff A053760(k) < A053760(n) for every kA000040(A147971(n))

Extensions

a(20)-a(29) from Charles R Greathouse IV, Apr 06 2012

A096637 Smallest prime p == 1 mod 8 (A007519) and p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).

Original entry on oeis.org

17, 73, 241, 1009, 2689, 8089, 33049, 53881, 87481, 483289, 515761, 1083289, 7921489, 3818929, 9257329, 22000801, 68204761, 48473881, 175244281, 1149374521, 427733329, 898716289
Offset: 0

Author

Robert G. Wilson v, Jun 24 2004

Keywords

Comments

Same as smallest prime p == 1 mod 8 with the property that the Legendre symbol (p|q) = 1 for the first n odd primes q = prime(k+1), k = 1, 2, ..., n, and (p|q) = -1 for q = prime(n+2).

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; If[Mod[p, 8] == 1, a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]]], {n, 10^9}]; t

Extensions

Better name from Jonathan Sondow, Mar 07 2013
Showing 1-10 of 12 results. Next