cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002248 Number of points on y^2 + xy = x^3 + x^2 + x over GF(2^n).

Original entry on oeis.org

2, 8, 14, 16, 22, 56, 142, 288, 518, 968, 1982, 4144, 8374, 16472, 32494, 65088, 131174, 263144, 525086, 1047376, 2094358, 4193912, 8393806, 16783200, 33550022, 67092488, 134210174, 268460656, 536911222
Offset: 1

Views

Author

Keywords

Comments

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). The point at infinity is counted also. - T. D. Noe, Mar 12 2009

Programs

  • Magma
    I:=[2, 8, 14, 16]; [n le 4 select I[n] else 4*Self(n-1)-7*Self(n-2)+8*Self(n-3)-4*Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 18 2012
    
  • Mathematica
    Needs["FiniteFields`"]; Table[cnt=1; (* 1 point at infinity *) f=Table[GF[2,n][IntegerDigits[i,2,n]], {i,0,2^n-1}]; Do[If[y^2+x*y-x^3-x^2-x==0, cnt++ ], {x,f}, {y,f}]; cnt, {n,6}] (* T. D. Noe, Mar 12 2009 *)
    LinearRecurrence[{4,-7,8,-4},{2,8,14,16},30] (* Vincenzo Librandi, Jun 18 2012 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -4,8,-7,4]^(n-1)*[2;8;14;16])[1,1] \\ Charles R Greathouse IV, Jun 23 2020

Formula

a(n) = 2^n + 1 - b(n); b(n) = b(n-1) - 2*b(n-2), b(1)=1, b(2)=-3; b(n) = A002249(n).
G.f.: -2*x*(-1+2*x^2) / ( (x-1)*(2*x-1)*(2*x^2 - x + 1) ).
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4). - Vincenzo Librandi, Jun 18 2012