cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002297 Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.

Original entry on oeis.org

1, 1, 3, 2, 115, 11, 5887, 151, 259723, 15619, 381773117, 655177, 20646903199, 27085381, 467168310097, 2330931341, 75920439315929441, 12157712239, 5278968781483042969, 37307713155613, 9093099984535515162569, 339781108897078469, 168702835448329388944396777
Offset: 1

Views

Author

Keywords

Examples

			1, 1, 3/4, 2/3, 115/192, 11/20, ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002298 (for denominators), A002304, A002305. Essentially the same as A049330, except for the n=4 term.

Programs

  • Mathematica
    a[n_] := Numerator[ (2/Pi)*Integrate[ (Sin[x]/x)^n, {x, 0, Infinity}] ]; Table[ a[n], {n, 1, 21}] (* Jean-François Alcover, Dec 19 2011 *)
    Numerator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^(n-1)), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
  • PARI
    a(n) = numerator((n/2^(n-1)) * sum(r=0, n/2, (-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!))); \\ Michel Marcus, Oct 02 2013

Formula

a(n) = numerator((n/2^(n-1)) * sum((-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!), r=0..n/2)). - Sean A. Irvine, Oct 01 2013

Extensions

a(22)-a(23) from T. D. Noe, Feb 22 2014