cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002299 Binomial coefficients C(2*n+5,5).

Original entry on oeis.org

1, 21, 126, 462, 1287, 3003, 6188, 11628, 20349, 33649, 53130, 80730, 118755, 169911, 237336, 324632, 435897, 575757, 749398, 962598, 1221759, 1533939, 1906884, 2349060, 2869685, 3478761, 4187106, 5006386, 5949147, 7028847, 8259888, 9657648, 11238513
Offset: 0

Views

Author

N. J. A. Sloane, Eric Lane

Keywords

Comments

Number of standard tableaux of shape (2n+1,1^5). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

Formula

a(n) = A000389(2*n+5).
G.f.: (1+15*x+15*x^2+x^3)/(1-x)^6 = (1+x)*(x^2+14*x+1)/(1-x)^6.
E.g.f.: (30 + 600*x + 1275*x^2 + 730*x^3 + 140*x^4 + 8*x^5)*exp(x)/30. - G. C. Greubel, Nov 23 2017
Sum_{n>=0} (-1)^n/a(n) = 5*(10/3 - Pi). - Matthieu Pluntz, Oct 08 2019
Sum_{n>=0} 1/a(n) = 40*log(2) - 80/3. - Amiram Eldar, Jan 03 2022
From Peter Bala, Sep 03 2023: (Start)
a(n) = Sum_{0 <= i <= j <= n} (j+1)*(2*i+1)^2.
a(n) = (n+2)*(2*n+5)/(n*(2*n-1))*a(n-1) with a(0) := 1. (End)
a(n) = 2*A225007(n) - A006324(n+1). - Yasser Arath Chavez Reyes, Feb 27 2024