cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002312 Arc-cotangent reducible numbers or non-Størmer numbers: largest prime factor of k^2 + 1 is less than 2*k.

Original entry on oeis.org

3, 7, 8, 13, 17, 18, 21, 30, 31, 32, 38, 41, 43, 46, 47, 50, 55, 57, 68, 70, 72, 73, 75, 76, 83, 91, 93, 98, 99, 100, 105, 111, 112, 117, 119, 122, 123, 128, 129, 132, 133, 142, 144, 155, 157, 162, 172, 173, 174, 177, 182, 183, 185, 187, 189, 191, 192, 193, 200
Offset: 1

Views

Author

Keywords

Comments

Also numbers such that k^2 + 1 has no primitive divisor, hence (by Everest & Harman, Theorem 1.4) 2.138n < a(n) < 10.6n for large enough n. They conjecture that a(n) ~ cn where c = 1/(1 - log 2) = 3.258.... - Charles R Greathouse IV, Nov 15 2014

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 247.
  • Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, in Number Theory and Polynomials (James McKee and Chris Smyth, ed.), London Mathematical Society 2008.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Todd, Table of Arctangents. National Bureau of Standards, Washington, DC, 1951, p. 94.

Crossrefs

Cf. A005528.
Cf. A006530, A071931 (subsequence).

Programs

  • Haskell
    a002312 n = a002312_list !! (n-1)
    a002312_list = filter (\x -> 2 * x > a006530 (x ^ 2 + 1)) [1..]
    -- Reinhard Zumkeller, Jun 12 2015
    
  • Mathematica
    lst={}; Do[n=m^2+1; p=FactorInteger[n][[ -1, 1]]; If[p<2m, AppendTo[lst, m]], {m, 200}]; lst (* T. D. Noe, Apr 09 2004 *)
    Select[Range[200],FactorInteger[#^2+1][[-1,1]]<2#&] (* Harvey P. Dale, Dec 07 2015 *)
  • PARI
    is(n)=my(f=factor(n^2+1)[,1]);f[#f]<2*n \\ Charles R Greathouse IV, Nov 14 2014
    
  • Python
    from sympy import factorint
    def ok(n): return max(factorint(n*n + 1)) < 2*n
    print(list(filter(ok, range(1, 201)))) # Michael S. Branicky, Aug 30 2021

Extensions

Description and initial term modified Jan 15 1996
More terms from Jason Earls, Jun 14 2002