cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002314 Minimal integer square root of -1 modulo p, where p is the n-th prime of the form 4k+1.

Original entry on oeis.org

2, 5, 4, 12, 6, 9, 23, 11, 27, 34, 22, 10, 33, 15, 37, 44, 28, 80, 19, 81, 14, 107, 89, 64, 16, 82, 60, 53, 138, 25, 114, 148, 136, 42, 104, 115, 63, 20, 143, 29, 179, 67, 109, 48, 208, 235, 52, 118, 86, 24, 77, 125, 35, 194, 154, 149, 106, 58, 26, 135, 96, 353, 87, 39
Offset: 1

Views

Author

Keywords

Comments

In other words, if p is the n-th prime == 1 (mod 4), a(n) is the smallest positive integer k such that k^2 + 1 == 0 (mod p).
The 4th roots of unity mod p, where p = n-th prime == 1 (mod 4), are +1, -1, a(n) and p-a(n).
Related to Stormer numbers.
Comment from Igor Shparlinski, Mar 12 2007 (writing to the Number Theory List): Results about the distribution of roots (for arbitrary quadratic polynomials) are given by W. Duke, J. B. Friedlander and H. Iwaniec and A. Toth.
Comment from Emmanuel Kowalski, Mar 12 2007 (writing to the Number Theory List): It is known (Duke, Friedlander, Iwaniec, Annals of Math. 141 (1995)) that the fractional part of a(n)/p(n) is equidistributed in [0,1/2] for p(n)
From Artur Jasinski, Dec 10 2008: (Start)
If we take the four numbers 1, A002314(n), A152676(n), and A152680(n), then their multiplication table modulo A002144(n) is isomorphic to the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i=sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i.
1, A002314(n), A152676(n), A152680(n) are subfield of Galois Field [A002144(n)]. (End)
It is found empirically that the solutions of the Diophantine equation X^4 + Y^2 == 0 (mod P) (where P is a prime of the form P=4k+1) are integer points on parabolas Y = (+-(X^2 - P*X) + P*i)/C(P) where C(P) is the term corresponding to a prime P in this sequence. - Seppo Mustonen, Sep 22 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,j,k; for i from 1 to (n-1)/2 do if i^2 +1 mod n = 0 then RETURN(i); fi od: -1; end;
    t1:=[]; M:=40; for n from 1 to M do q:=ithprime(n); if q mod 4 = 1 then t1:=[op(t1),f(q)]; fi; od: t1;
  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, k = 1; While[ ! Mod[k^2 + 1, Prime[n]] == 0, k++ ]; AppendTo[aa, k]], {n, 1, 100}]; aa (* Artur Jasinski, Dec 10 2008 *)
  • PARI
    first_N_terms(N) = my(v=vector(N), i=0); forprime(p=5, oo, if(p%4==1, i++; v[i] = lift(sqrt(Mod(-1,p)))); if(i==N, break())); v \\ Jianing Song, Apr 17 2021

Extensions

Better description from Tony Davie (ad(AT)dcs.st-and.ac.uk), Feb 07 2001
More terms from Jud McCranie, Mar 18 2001