cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002316 Related to Bernoulli numbers.

Original entry on oeis.org

1, 5, 26, 97, 265, 362, -1351, -13775, -70226, -262087, -716035, -978122, 3650401, 37220045, 189750626, 708158977, 1934726305, 2642885282, -9863382151, -100568547815, -512706121226, -1913445293767, -5227629760075, -7141075053842
Offset: 0

Views

Author

Keywords

Comments

Denoted by beta_n by Lehmer.

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 84.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = (-1)^n*A002317(-1-n).

Programs

  • Maple
    f:= gfun:-rectoproc({a(0)=1, a(1)=5, a(2)=26, a(3)=97, a(n)=6*a(n-1)-11*a(n-2)-6*a(n-3)-a(n-4)},a(n),remember):
    map(f, [$0..25]); # Robert Israel, Aug 23 2017
  • Mathematica
    LinearRecurrence[{6,-11,-6,-1},{1,5,26,97},30] (* or *) CoefficientList[ Series[(2x^3+7x^2-x+1)/(x^4+6x^3+11x^2-6x+1),{x,0,30}],x] (* Harvey P. Dale, Jun 13 2011 *)
  • PARI
    {a(n)=if(n>=0, polcoeff( (1-x+7*x^2+2*x^3)/(1-6*x+11*x^2+6*x^3+x^4) +x*O(x^n),n), n=-1-n; (-1)^n*polcoeff( (2-7*x-x^2-x^3)/(1-6*x+11*x^2+6*x^3+x^4) +x*O(x^n),n) )} /* Michael Somos, Mar 27 2005 */

Formula

a(0)..a(11) are as given (with signs); for n >= 12, a(n) = -2702*a(n-6) - a(n-12).
G.f.: (2x^3 + 7x^2 - x + 1)/(x^4 + 6x^3 + 11x^2 - 6x + 1).
a(0)=1, a(1)=5, a(2)=26, a(3)=97, a(n) = 6*a(n-1) - 11*a(n-2) - 6*a(n-3) - a(n-4). - Harvey P. Dale, Jun 13 2011

Extensions

More terms from James Sellers, Dec 23 1999