cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002352 Numerators of convergents to cube root of 2.

Original entry on oeis.org

1, 4, 5, 29, 34, 63, 286, 349, 635, 5429, 6064, 90325, 96389, 1054215, 2204819, 3259034, 15240955, 186150494, 387541943, 1348776323, 3085094589, 4433870912, 16386707325, 69980700212, 86367407537, 156348107749, 399063623035, 5743238830239, 17628780113752
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002351 (denominators), A002945.

Programs

  • Maple
    Digits := 60: E := 2^(1/3); convert(evalf(E),confrac,50,'cvgts'): cvgts;
    # Alternate:
    N:= 100: # to get a(1) to a(N)
    c[0] := 1: a[0] := 1: q[0] := 0: a[1] := 1: q[1] := 1:
    for n from 1 to N do
      c[n] := floor((-1)^n*3*a[n]^2/(q[n]*(a[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
      a[n+1] := c[n]*a[n] + a[n-1];
      q[n+1] := c[n]*q[n] + q[n-1];
    od: seq(a[i], i=1..N); # Robert Israel, Oct 08 2017
  • Mathematica
    Convergents[CubeRoot[2],30]//Numerator (* Harvey P. Dale, May 30 2023 *)

Formula

From Robert Israel, Oct 08 2017: (Start)
c(n) = floor((-1)^n*3*a(n)^2/(q(n)*(a(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
a(n+1) = c(n)*a(n) + a(n-1),
q(n+1) = c(n)*q(n) + q(n-1), with a(0) = 1, c(0) = 1, q(0) = 0, a(1) = 1, q(1) = 1. (End)

Extensions

Offset changed by Andrew Howroyd, Jul 04 2024