cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002469 The game of Mousetrap with n cards: the number of permutations of n cards in which 2 is the only hit.

Original entry on oeis.org

0, 0, 1, 5, 31, 203, 1501, 12449, 114955, 1171799, 13082617, 158860349, 2085208951, 29427878435, 444413828821, 7151855533913, 122190894996451, 2209057440250799, 42133729714051825, 845553296311189109, 17810791160738752207, 392911423093684031099
Offset: 2

Views

Author

Keywords

Examples

			G.f.: x^4 + 5*x^5 + 31*x^6 + 203*x^7 + 1501*x^8 + 12449*x^9 + 114955*x^10 + ...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, E37.
  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A002469:=n->(n-3)*floor(((n-2)!+1)/exp(1)) + (n-4)*floor(((n-3)!+1)/exp(1)): 0, seq(A002469(n), n=3..30); # Wesley Ivan Hurt, Jan 10 2017
  • Mathematica
    Join[{0},Table[(n-3)Floor[((n-2)!+1)/E]+(n-4)Floor[((n-3)!+1)/E], {n,3,30}]] (* Harvey P. Dale, Feb 05 2012 *)
    a[n_] := (n-3)*Subfactorial[n-2]+(n-4)*Subfactorial[n-3]; a[n_ /; n <= 3] = 0; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Dec 12 2014 *)
  • PARI
    default(realprecision,200);
    e=exp(1);
    A002469(n) = if( n<=3, 0, (n-3)*floor(((n-2)!+1)/e) + (n-4)*floor(((n-3)!+1)/e) );
    /* Joerg Arndt, Apr 22 2013 */

Formula

a(n) = sum of terms in (n-2)-nd row of triangle A159610; equivalent to: a(n) = (n-2)*A000255(n-1) + A000166(n). - Gary W. Adamson, Apr 17 2009
a(n) = (n-3)* A000166(n-2) + (n-4)* A000166(n-3). - Gary Detlefs, Apr 10 2010
a(n) = (n-3)*floor(((n-2)!+1)/e) + (n-4)*floor(((n-3)!+1)/e), for n>2. - Gary Detlefs, Apr 10 2010
G.f.: x - 1 + (1-2*x)/(x*Q(0)), where Q(k) = 1/x - (2*k+1) - (k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 25 2013

Extensions

More terms from Harvey P. Dale, Feb 05 2012