A002475 Numbers k such that x^k + x + 1 is irreducible over GF(2).
0, 2, 3, 4, 6, 7, 9, 15, 22, 28, 30, 46, 60, 63, 127, 153, 172, 303, 471, 532, 865, 900, 1366, 2380, 3310, 4495, 6321, 7447, 10198, 11425, 21846, 24369, 27286, 28713, 32767, 34353, 46383, 53484, 62481, 83406, 87382, 103468, 198958, 248833
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 975.
Links
- Joerg Arndt, Matters Computational (The Fxtbook), section 40.9.3 "Irreducible trinomials of the form 1 + x^k + x^d", p.850
- Lucas A. Brown, Python program.
- Lucas A. Brown, Sage program.
- N. Zierler, On x^n+x+1 over GF(2), Information and Control, 16 1970 502-505.
- Index entries for sequences related to trinomials over GF(2)
Programs
-
Magma
P
:= PolynomialRing(GaloisField(2)); for n := 0 to 100000 do if IsIrreducible(x^n+x+1) then print(n); end if; end for; -
Maple
select(n -> Irreduc(x^n+x+1) mod 2, [0,$2..10000]); # Robert Israel, Aug 09 2015
-
Mathematica
Do[ If[ ToString[ Factor[ x^n + x + 1, Modulus -> 2 ] ] == ToString[ x^n + x + 1 ], Print [ n ] ], {n, 0, 28713} ] Select[Range[1000], IrreduciblePolynomialQ[x^# + x + 1, Modulus -> 2] &] (* Robert Price, Sep 19 2018 *)
-
PARI
for (n=1,10^6, if ( polisirreducible(Mod(1,2)*(x^n+x+1)), print1(n,", ") ) ); /* Joerg Arndt, Apr 28 2012 */
-
PARI
is(n)=if(n>3&&[1,0,1,1,0,1,0,0][n%8+1], return(0)); polisirreducible(Mod('x^n+'x+1,2)) \\ Charles R Greathouse IV, Jun 04 2015
-
SageMath
P.
= GF(2)[] for n in range(90): if (x^n+x+1).is_irreducible(): print(n) # Ruperto Corso, Dec 11 2011
Extensions
Two more terms from Paul Zimmermann, Sep 05 2002
a(37)-a(39) from Max Alekseyev, Oct 29 2011
a(40)-a(41) from Ruperto Corso, Dec 11 2011
a(42) from Manfred Scheucher, Jun 04 2015
a(43) from Manfred Scheucher, Aug 09 2015
a(44) from Lucas A. Brown, Nov 28 2022
Comments