A002501 a(n) = 7^n - 3*4^n + 2*3^n.
1, 19, 205, 1795, 14221, 106819, 778765, 5581315, 39606541, 279447619, 1965098125, 13792018435, 96690872461, 677427332419, 4744368982285, 33220131761155, 232579232659981, 1628208214321219, 11398072876175245, 79788974736297475, 558532690864457101
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- G. Kreweras, Inversion des polynomes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B 268 1969 A577-A579.
- Index entries for linear recurrences with constant coefficients, signature (14,-61,84)
Programs
-
Mathematica
Table[7^n - 3*4^n + 2*3^n, {n, 20}] (* T. D. Noe, May 29 2012 *)
-
PARI
a(n)=7^n-3*4^n+2*3^n \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: -x*(1+5*x) / ( (3*x-1)*(7*x-1)*(4*x-1) ). - R. J. Mathar, Jun 09 2013
a(n) = 14*a(n-1) - 61*a(n-2) + 84*a(n-3). - Wesley Ivan Hurt, Apr 11 2022
Extensions
Better definition and more terms from Goran Kilibarda, Vladeta Jovovic, Apr 14 2004
Comments