A002542 Number of two-valued complete Post functions of n variables.
0, 2, 56, 16256, 1073709056, 4611686016279904256, 85070591730234615856620279821087277056, 28948022309329048855892746252171976963147354982949671778132708698262398304256
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..11
- Atwell R. Turquette, A General Theory of k-Place Stroke Functions in 2-Valued Logic, Proceedings of the American Mathematical Society 13.5 (1962): 822-824. Gives a(1)-a(4).
- Roger F. Wheeler, Complete connectives for the 3-valued propositional calculus, Proc. London Math. Soc. (3) 16 (1966), 167-191.
- R. F. Wheeler, Complete connectives for the 3-valued propositional calculus, Proc. London Math. Soc. (3) 16 (1966), 167-191. [Annotated scanned copy]
Crossrefs
Cf. A002543.
Programs
-
Magma
[2^(2^n-2)-2^(2^(n-1)-1): n in [1..10]]; // Vincenzo Librandi, Mar 24 2014
-
Mathematica
Table[(2^(2^n - 2) - 2^(2^(n - 1) - 1)), {n, 1, 10}] (* Vincenzo Librandi, Mar 24 2014 *)
-
PARI
a(n) = 2^(2^n-2)-2^(2^(n-1)-1) \\ Felix Fröhlich, Jun 01 2019
Formula
a(n) = 2^(2^n-2) - 2^(2^(n-1)-1). - Sean A. Irvine, Mar 23 2014
Extensions
a(8) from Sean A. Irvine, Mar 23 2014