A002557 Odd squarefree numbers with an even number of prime factors that have no prime factors greater than 31.
1, 15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 115, 119, 133, 143, 145, 155, 161, 187, 203, 209, 217, 221, 247, 253, 299, 319, 323, 341, 377, 391, 403, 437, 493, 527, 551, 589, 667, 713, 899, 1155, 1365, 1785, 1995, 2145, 2415, 2805, 3003
Offset: 1
References
- H. Gupta, A formula for L(n), J. Indian Math. Soc., 7 (1943), 68-71.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Israel, Table of n, a(n) for n = 1..512
- H. Gupta, A formula for L(n), J. Indian Math. Soc., 7 (1943), 68-71. [Annotated scanned copy]
Programs
-
Magma
a:= func< n | Factorization(n)>; [1] cat [n: n in [3..3003 by 2] | IsSquarefree(n) and (-1)^&+[p[2]: p in a(n)] eq 1 and f[#f][1] le 31 where f is a(n)]; // Arkadiusz Wesolowski, Jan 21 2016
-
Maple
S:= select(t -> (nops(t)::even), combinat:-powerset(select(isprime, [seq(i,i=3..31,2)]))): sort(map(convert,S,`*`)); # Robert Israel, Jan 21 2016
-
Mathematica
npfQ[n_]:=With[{pf=FactorInteger[n][[;;,1]]},SquareFreeQ[n]&&EvenQ[PrimeOmega[n]]&&Max[pf]<32]; Select[Range[1,3003,2],npfQ] (* Harvey P. Dale, May 03 2025 *)
-
Python
powerset = lambda lst: reduce(lambda result, x: result + [subset + [x] for subset in result], lst, [[]]) product = lambda lst: reduce(lambda x, y: x*y, lst, 1) primes = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31] sequence = sorted(product(s) for s in powerset(primes) if len(s) % 2 == 0) # David Radcliffe, Jan 21 2016
Extensions
Name changed and sequence extended by Arkadiusz Wesolowski, Jan 21 2016
Comments