A075458
Domination number for queens' graph Q(n).
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 5, 6, 7, 8, 9, 9, 9, 9, 10, 11, 11, 12, 12, 13, 13
Offset: 1
- W. W. R. Ball and H. S. M. Coxeter, "Math'l Rec. and Essays," 13th Ed. Dover, p. 173.
- John Watkins, Across the Board: The Mathematics of Chessboard Problems (2004), pp. 113-137
- William Herbert Bird, Computational methods for domination problems, University of Victoria, 2017. See Table 5.1 on p. 114.
- S. Bozóki, P. Gál, I. Marosi and W. D. Weakley, Domination of the rectangular queen's graph, arXiv:1606.02060 [math.CO], 2016.
- Domingos M. Cardoso, Inês Serôdio Costa, and Rui Duarte, Spectral properties of the n-Queens' Graphs, arXiv:2012.01992 [math.CO], 2020. See p. 10.
- Irene Choi, Shreyas Ekanathan, Aidan Gao, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Vaibhav Rastogi, Daniel Sheffield, Michael Yang, Angela Zhao, and Corey Zhao, The Struggles of Chessland, arXiv:2212.01468 [math.HO], 2022.
- Dmitry Finozhenok and W. Doug Weakley, An Improved Lower Bound for Domination Numbers of the Queen’s Graph, Australasian Journal of Combinatorics, vol. 37, 2007, p. 295-300.
- Dmitry Kamenetsky, Best known solutions for n <= 26.
- Dmitry Kamenetsky, Matlab program to compute a(n) for small n.
- Dmitry Kamenetsky, Java program to compute the best known solutions.
- Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
- Stephan Mertens, Domination Polynomial of the Rook Graph, arXiv:2401.00716 [math.CO], 2024.
- Patric R. J. Östergård and William D. Weakley, Values of Domination Numbers of the Queen's Graph, The Electronic Journal of Combinatorics, volume 8, issue 1, 2001.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 49.
- A. Sinko and P. J. Slater, Queen's domination using border squares and (A,B)-restricted domination, Discrete Math., 308 (2008), 4822-4828.
- Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, The College Mathematics Journal, Vol. 45, No. 4, September 2014, pp. 278-287.
- Eric Weisstein's World of Mathematics, Domination Number
- Eric Weisstein's World of Mathematics, Queen Graph
- Eric Weisstein's World of Mathematics, Queens Problem
Cf.
A075324 (independent domination number).
A002564
Number of different ways one can attack all squares on an n X n chessboard using the minimum number of queens.
Original entry on oeis.org
1, 4, 1, 12, 186, 4, 86, 4860, 114, 8, 2, 8, 288, 4632, 205832, 2968, 124, 16, 84
Offset: 1
- W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andy Huchala, Python program.
- Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
- Mia Müßig, Julia code to compute the sequence
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
- Eric Weisstein's World of Mathematics, Minimal Edge Cover.
- Eric Weisstein's World of Mathematics, Minimum Dominating Set.
- Eric Weisstein's World of Mathematics, Queen Graph.
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 1 to 7
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 8
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 9 to 13
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 14
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 16
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 17 to 19
A002565
Number of non-isomorphic ways to attack all squares on an n X n chessboard using the smallest possible number of queens with each queen attacking at least one other.
Original entry on oeis.org
0, 2, 5, 3, 15, 150, 5, 56, 3, 39, 681
Offset: 1
- W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
Showing 1-3 of 3 results.
Comments