cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047921 Triangle of numbers a(n,k) = number of permutations on n letters containing k 3-sequences (n >= 0, 0<=k<=max(0,n-2)).

Original entry on oeis.org

1, 1, 2, 5, 1, 21, 2, 1, 106, 11, 2, 1, 643, 62, 12, 2, 1, 4547, 406, 71, 13, 2, 1, 36696, 3046, 481, 80, 14, 2, 1, 332769, 25737, 3708, 559, 89, 15, 2, 1, 3349507, 242094, 32028, 4414, 640, 98, 16, 2, 1, 37054436, 2510733, 306723, 38893, 5164, 724, 107, 17, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
       1;
       1;
       2;
       5,     1;
      21,     2,    1;
     106,    11,    2,   1;
     643,    62,   12,   2,  1;
    4547,   406,   71,  13,  2,  1;
   36696,  3046,  481,  80, 14,  2, 1;
  332769, 25737, 3708, 559, 89, 15, 2, 1;
  ...
		

Crossrefs

Columns give A002628, A002629, A002630.
Row sums give A000142.

Formula

Riordan gives a recurrence.

Extensions

Edited and extended by Max Alekseyev, Sep 05 2010
a(0,0) = a(1,0) = 1 prepended by Alois P. Heinz, Apr 20 2021

A247109 Number of permutations of length n with two 4-sequences.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 11, 65, 433, 3271, 27741, 261231, 2708064, 30671367, 377034018, 5001404982, 71229862678, 1084282429946, 17571257417630, 302064161086250, 5490937395703435, 105243824522368960, 2121386876912041845, 44863116021267642255, 993272322666679219071, 22977273619066571708457
Offset: 1

Views

Author

Tani Akinari, Nov 21 2014

Keywords

Crossrefs

Cf. A002630 (permutations with two 3-sequences).

Programs

  • Mathematica
    Table[Sum[(-1)^k * k*(k-1)/2 * Sum[Sum[Binomial[k-1,p] * Binomial[k-p-1,i-2*p] * Binomial[n-2*k+p-1,n-3*k+i-1] * (n-3*k+i)!,{p,0,k-1}],{i,Max[0,3*k-n],2*(k-1)}],{k,2,n-3}],{n,1,20}] (* Vaclav Kotesovec, Nov 23 2014 after Tani Akinari *)
  • PARI
    a(n)=sum(k=2,n-3,(-1)^k*k*(k-1)/2*sum(i=max(0,3*k-n),2*(k-1),sum(p=0,k-1,binomial(k-1,p)*binomial(k-p-1,i-2*p)*binomial(n-2*k+p-1,n-3*k+i-1)*(n-3*k+i)!)))

Formula

a(n) ~ n! / n^3. - Vaclav Kotesovec, Nov 23 2014
Showing 1-2 of 2 results.