A002691 a(n) = (n+2) * (2n+1) * (2n-1)! / (n-1)!.
1, 9, 120, 2100, 45360, 1164240, 34594560, 1167566400, 44108064000, 1843717075200, 84475764172800, 4209708914611200, 226676633863680000, 13114862387827200000, 811372819726909440000, 53449184499510159360000, 3735154775612827607040000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
- H. E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp. 9 (1955), 164-177.
- H. E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp. 9 (1955), 164-177. [Annotated scanned copy]
Crossrefs
Cf. A002690.
Programs
-
Maple
with(combstruct): a:=n-> add((count(Permutation(n*2+1), size=n+1)), j=0..n+1)/2: seq(a(n), n=0..16); # Zerinvary Lajos, May 03 2007
-
Mathematica
Join[{1},Table[(n+2)(2n+1)(2n-1)!/(n-1)!,{n,15}]] (* Harvey P. Dale, Jun 09 2011 *)
-
PARI
a(n)=(n+2)*(2*n+1)*(2*n-1)!/(n-1)!
Formula
E.g.f.: (1-x)/(1-4*x)^(5/2).
Conjecture: a(n) +4*(-n-1)*a(n-1) +4*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
Extensions
Edited by Ralf Stephan, Mar 21 2004
Comments