cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A133399 Triangle T(n,k)=number of forests of labeled rooted trees with n nodes, containing exactly k trees of height one, all others having height zero (n>=0, 0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 1, 28, 12, 1, 75, 120, 1, 186, 750, 120, 1, 441, 3780, 2100, 1, 1016, 16856, 21840, 1680, 1, 2295, 69552, 176400, 45360, 1, 5110, 272250, 1224720, 705600, 30240, 1, 11253, 1026300, 7692300, 8316000, 1164240, 1, 24564, 3762132, 45018600
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,     2;
  1,     9;
  1,    28,     12;
  1,    75,    120;
  1,   186,    750,     120;
  1,   441,   3780,    2100;
  1,  1016,  16856,   21840,   1680;
  1,  2295,  69552,  176400,  45360;
  1,  5110, 272250, 1224720, 705600, 30240;
  ...
		

Crossrefs

Columns k=1,2 give: A058877, A133386.
Row sums give: A000248.
T(2n,n) = A001813(n), T(2n+1,n) = A002691(n).
Reading the table by diagonals gives triangle A198204. - Peter Bala, Jul 31 2012
Cf. A235596.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)*StirlingSecond(n-k+1,k+1): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 06 2019
  • Maple
    T:= (n,k)-> binomial(n,k)*k!*Stirling2(n-k+1,k+1): for n from 0 to 10 do lprint(seq(T(n, k), k=0..floor(n/2))) od;
  • Mathematica
    nn=12;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x (Exp[x]-1)] Exp[x],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k!*StirlingS2[n-k+1, k+1]; Table[t[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)

Formula

T(n,k) = C(n,k) * k! * stirling2(n-k+1,k+1).
E.g.f.: exp(y*x*(exp(x)-1))*exp(x). - Geoffrey Critzer, Feb 09 2013
Sum_{k=1..floor(n/2)} T(n,k) = A235596(n+1). - Alois P. Heinz, Jun 21 2019

A198204 Series reversion of (1 - t*x)*log(1 + x) with respect to x.

Original entry on oeis.org

1, 1, 2, 1, 9, 12, 1, 28, 120, 120, 1, 75, 750, 2100, 1680, 1, 186, 3780, 21840, 45360, 30240, 1, 441, 16856, 176400, 705600, 1164240, 665280, 1, 1016, 69552, 1224720, 8316000, 25280640, 34594560, 17297280, 1, 2295, 272250, 7692300, 82577880, 408648240, 998917920, 1167566400, 518918400
Offset: 1

Views

Author

Peter Bala, Jul 31 2012

Keywords

Comments

This triangle is A133399 read by diagonals.

Examples

			Triangle begins
.n\k.|..0....1.....2......3......4......5
= = = = = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....2
..3..|..1....9....12
..4..|..1...28...120....120
..5..|..1...75...750...2100...1680
..6..|..1..186..3780..21840..45360..30240
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]*(1 - t*x),{x,0,9}]], x]*Table[n!, {n,0,9}], t]] (* Peter Luschny, Oct 25 2015 *)

Formula

T(n,k) = k!*binomial(n + k - 1,k)*Stirling2(n,k + 1) (n >= 1, k >=0).
E.g.f.: A(x,t) = series reversion of (1 - t*x)*log(1 + x) w.r.t. x = x + (1 + 2*t)*x^2/2! + (1 + 9*t + 12*t^2)*x^3/3! + ....
Main diagonal A001813, first subdiagonal A002691.
Column 1 A058877, column 2 A133386. Row sums A052892.
1 - t*A(x,t) = x/series reversion of x*(1 - t(exp(x) - 1)) with respect to x. Cf. A141618. - Peter Bala, Oct 22 2015

A002690 a(n) = (n+1) * (2*n)! / n!.

Original entry on oeis.org

1, 4, 36, 480, 8400, 181440, 4656960, 138378240, 4670265600, 176432256000, 7374868300800, 337903056691200, 16838835658444800, 906706535454720000, 52459449551308800000, 3245491278907637760000, 213796737998040637440000, 14940619102451310428160000, 1103945744792235714969600000
Offset: 0

Views

Author

Keywords

Comments

Coefficients of orthogonal polynomials.
E.g.f. for series with alternating signs: x/(1+4*x)^(1/2).
Central terms of triangle A245334. - Reinhard Zumkeller, Aug 30 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = (n+1) * A001813(n) = 2^n * A001193(n+1).
Cf. A245334.

Programs

  • Haskell
    a002690 n = a245334 (2 * n) n  -- Reinhard Zumkeller, Aug 30 2014
  • Magma
    [(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
    
  • Maple
    with(combstruct):bin := {B=Union(Z,Prod(B,B))}:
    seq (count([B,bin,labeled],size=n+1)*(n+1), n=0..17); # Zerinvary Lajos, Dec 05 2007
    A002690 := n -> 2^n*n!*JacobiP(n, -1/2, -n+1, 3):
    seq(simplify(A002690(n)), n = 0..18);  # Peter Luschny, Jan 22 2025
  • Mathematica
    Table[((n+1)(2n)!)/n!,{n,0,20}] (* Harvey P. Dale, Sep 04 2011 *)
  • PARI
    a(n)=(n+1)*(2*n)!/n!
    

Formula

E.g.f.: (1-2*x)/(1-4*x)^(3/2).
a(n) = 2^n*n!*JacobiP(n, -1/2, -n+1, 3). - Peter Luschny, Jan 22 2025

Extensions

Edited by Ralf Stephan, Mar 21 2004

A278071 Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.

Original entry on oeis.org

1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0

Views

Author

Peter Luschny, Nov 10 2016

Keywords

Examples

			Triangle starts:
.       1,
.       1,      -1,
.       6,      -4,     1,
.      60,     -36,     9,    -1,
.     840,    -480,   120,   -16,   1,
.   15120,   -8400,  2100,  -300,  25,  -1,
.  332640, -181440, 45360, -6720, 630, -36, 1,
...
		

Crossrefs

Cf. A278069 (x=1, row sums up to sign), A278070 (x=-1).
T(n,0) = Pochhammer(n, n) (cf. A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf. A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf. A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf. A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf. A083374).

Programs

  • Maple
    p := n -> (-1)^n*hypergeom([n, -n], [], x):
    ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
    # Alternatively the polynomials by recurrence:
    P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
    ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));
    sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;
    # Or by generalized Laguerre polynomials:
    P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):
    for n from 0 to 6 do simplify(P(n,x)) od;
  • Mathematica
    row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
    (* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)

Formula

The P(n,x) are orthogonal polynomials. They satisfy the recurrence
P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.
In terms of generalized Laguerre polynomials (see the Krall and Fink link):
P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).
Showing 1-4 of 4 results.