A133399
Triangle T(n,k)=number of forests of labeled rooted trees with n nodes, containing exactly k trees of height one, all others having height zero (n>=0, 0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 2, 1, 9, 1, 28, 12, 1, 75, 120, 1, 186, 750, 120, 1, 441, 3780, 2100, 1, 1016, 16856, 21840, 1680, 1, 2295, 69552, 176400, 45360, 1, 5110, 272250, 1224720, 705600, 30240, 1, 11253, 1026300, 7692300, 8316000, 1164240, 1, 24564, 3762132, 45018600
Offset: 0
Triangle begins:
1;
1;
1, 2;
1, 9;
1, 28, 12;
1, 75, 120;
1, 186, 750, 120;
1, 441, 3780, 2100;
1, 1016, 16856, 21840, 1680;
1, 2295, 69552, 176400, 45360;
1, 5110, 272250, 1224720, 705600, 30240;
...
- Alois P. Heinz, Rows n = 0..200, flattened
- A. P. Heinz, Finding Two-Tree-Factor Elements of Tableau-Defined Monoids in Time O(n^3), Ed. S. G. Akl, F. Fiala, W. W. Koczkodaj: Advances in Computing and Information, ICCI90 Niagara Falls, LNCS 468, Springer-Verlag (1990), pp. 120-128.
-
/* As triangle */ [[Binomial(n,k)*Factorial(k)*StirlingSecond(n-k+1,k+1): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 06 2019
-
T:= (n,k)-> binomial(n,k)*k!*Stirling2(n-k+1,k+1): for n from 0 to 10 do lprint(seq(T(n, k), k=0..floor(n/2))) od;
-
nn=12;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x (Exp[x]-1)] Exp[x],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
t[n_, k_] := Binomial[n, k]*k!*StirlingS2[n-k+1, k+1]; Table[t[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)
A198204
Series reversion of (1 - t*x)*log(1 + x) with respect to x.
Original entry on oeis.org
1, 1, 2, 1, 9, 12, 1, 28, 120, 120, 1, 75, 750, 2100, 1680, 1, 186, 3780, 21840, 45360, 30240, 1, 441, 16856, 176400, 705600, 1164240, 665280, 1, 1016, 69552, 1224720, 8316000, 25280640, 34594560, 17297280, 1, 2295, 272250, 7692300, 82577880, 408648240, 998917920, 1167566400, 518918400
Offset: 1
Triangle begins
.n\k.|..0....1.....2......3......4......5
= = = = = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....2
..3..|..1....9....12
..4..|..1...28...120....120
..5..|..1...75...750...2100...1680
..6..|..1..186..3780..21840..45360..30240
...
-
Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]*(1 - t*x),{x,0,9}]], x]*Table[n!, {n,0,9}], t]] (* Peter Luschny, Oct 25 2015 *)
A002690
a(n) = (n+1) * (2*n)! / n!.
Original entry on oeis.org
1, 4, 36, 480, 8400, 181440, 4656960, 138378240, 4670265600, 176432256000, 7374868300800, 337903056691200, 16838835658444800, 906706535454720000, 52459449551308800000, 3245491278907637760000, 213796737998040637440000, 14940619102451310428160000, 1103945744792235714969600000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a002690 n = a245334 (2 * n) n -- Reinhard Zumkeller, Aug 30 2014
-
[(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
-
with(combstruct):bin := {B=Union(Z,Prod(B,B))}:
seq (count([B,bin,labeled],size=n+1)*(n+1), n=0..17); # Zerinvary Lajos, Dec 05 2007
A002690 := n -> 2^n*n!*JacobiP(n, -1/2, -n+1, 3):
seq(simplify(A002690(n)), n = 0..18); # Peter Luschny, Jan 22 2025
-
Table[((n+1)(2n)!)/n!,{n,0,20}] (* Harvey P. Dale, Sep 04 2011 *)
-
a(n)=(n+1)*(2*n)!/n!
A278071
Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.
Original entry on oeis.org
1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0
Triangle starts:
. 1,
. 1, -1,
. 6, -4, 1,
. 60, -36, 9, -1,
. 840, -480, 120, -16, 1,
. 15120, -8400, 2100, -300, 25, -1,
. 332640, -181440, 45360, -6720, 630, -36, 1,
...
- H. L. Krall and O. Fink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Herbert E. Salzer, Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).
T(n,0) = Pochhammer(n, n) (cf.
A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf.
A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf.
A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf.
A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf.
A083374).
-
p := n -> (-1)^n*hypergeom([n, -n], [], x):
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
# Alternatively the polynomials by recurrence:
P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));
sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;
# Or by generalized Laguerre polynomials:
P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):
for n from 0 to 6 do simplify(P(n,x)) od;
-
row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
(* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)
Showing 1-4 of 4 results.
Comments