A002733 Numbers k such that (k^2 + 1)/10 is prime.
7, 13, 17, 23, 27, 33, 37, 53, 63, 67, 77, 87, 97, 103, 113, 127, 137, 147, 153, 163, 167, 197, 223, 227, 247, 263, 267, 277, 283, 287, 297, 303, 323, 347, 363, 367, 373, 383, 397
Offset: 1
Keywords
References
- L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 25.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- L. Euler, De numeris primis valde magnis (E283), The Euler Archive
Programs
-
Haskell
a002733 = a000196 . (subtract 1) . (* 10) . a207337 -- Reinhard Zumkeller, Apr 06 2012
-
Maple
a := [ ]: for n from 1 to 400 do if (n^2+1 mod 10) = 0 and isprime((n^2+1)/10) then a := [ op(a), n ]; fi; od;
-
Mathematica
Select[Range[573], PrimeQ[(#^2 + 1)/10] &] (* T. D. Noe, Feb 28 2012 *)
-
PARI
forstep(n=7,1e3,[6,4],if(isprime(n^2\10+1),print1(n", "))) \\ Charles R Greathouse IV, Mar 11 2012
Comments