A207337 Primes of the form (m^2+1)/10.
5, 17, 29, 53, 73, 109, 137, 281, 397, 449, 593, 757, 941, 1061, 1277, 1613, 1877, 2161, 2341, 2657, 2789, 3881, 4973, 5153, 6101, 6917, 7129, 7673, 8009, 8237, 8821, 9181, 10433, 12041, 13177, 13469, 13913, 14669, 15761, 17389, 18233, 18749
Offset: 1
Keywords
Examples
a(3)=29, m(3)=A002733(3)=17. T(K(3))=A000217((17-1)/2)= A000217(8)=A207339(3)=36. (8^2+9^2)/5 = 29 = (4*36+1)/5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a207337 n = a207337_list !! (n-1) a207337_list = f a002522_list where f (x:xs) | m == 0 && a010051 y == 1 = y : f xs | otherwise = f xs where (y,m) = divMod x 10 -- Reinhard Zumkeller, Apr 06 2012
Formula
a(n) is the n-th member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, namely A002733(n).
Comments