cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A207339 Triangular numbers T from A000217 such that (4*T+1)/5 is prime.

Original entry on oeis.org

6, 21, 36, 66, 91, 136, 171, 351, 496, 561, 741, 946, 1176, 1326, 1596, 2016, 2346, 2701, 2926, 3321, 3486, 4851, 6216, 6441, 7626, 8646, 8911, 9591, 10011, 10296, 11026, 11476, 13041, 15051, 16471, 16836, 17391, 18336, 19701, 21736
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A207337, where also equivalent formulations are found.
The indices of these triangular numbers are given by (A002733(n)-1)/2.

Examples

			a(3) = 36 = T((17-1)/2) = T(8)=A000217(8). (4*36+1)/5 = 29 = A207337(3).
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[300]],PrimeQ[(4#+1)/5]&] (* Harvey P. Dale, Sep 18 2019 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(m(n)-1)/2, and m(n) given in A002733(n).

A002733 Numbers k such that (k^2 + 1)/10 is prime.

Original entry on oeis.org

7, 13, 17, 23, 27, 33, 37, 53, 63, 67, 77, 87, 97, 103, 113, 127, 137, 147, 153, 163, 167, 197, 223, 227, 247, 263, 267, 277, 283, 287, 297, 303, 323, 347, 363, 367, 373, 383, 397
Offset: 1

Views

Author

Keywords

Comments

Contribution from Wolfdieter Lang, Feb 27 2012: (Start)
The corresponding primes (n^2 + 1)/10 are given in A207337(n).
a(n) is the smallest positive representative of the class of nontrivial solutions of the congruence x^2 == 1 (Modd A207337(n)), if n >= 2. The trivial solution is the class with representative x=1, which also includes -1. For Modd n see a comment on A203571. For n=1: a(1) = 7 == 3 (Modd 5), and 3 is the smallest positive solution > 1.
The unique class of nontrivial solutions of the congruence x^2 == 1 (Modd p), with p an odd prime, exists for any p of the form 4*k+1, given in A002144. Here a subset of these primes is covered, the ones for k = k(n) = (a(n)^2 - 9)/40. These k-values are [1, 4, 7, 13, 18, 27, 34, 70, 99, 112, ...].
(End)

References

  • L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 25.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002733 = a000196 . (subtract 1) . (* 10) . a207337
    -- Reinhard Zumkeller, Apr 06 2012
  • Maple
    a := [ ]: for n from 1 to 400 do if (n^2+1 mod 10) = 0 and isprime((n^2+1)/10) then a := [ op(a), n ]; fi; od;
  • Mathematica
    Select[Range[573], PrimeQ[(#^2 + 1)/10] &] (* T. D. Noe, Feb 28 2012 *)
  • PARI
    forstep(n=7,1e3,[6,4],if(isprime(n^2\10+1),print1(n", "))) \\ Charles R Greathouse IV, Mar 11 2012
    

Formula

a(n) = sqrt(10*A207337(n)-1) = sqrt(8*A207339(n)+1), n >= 1. - Wolfdieter Lang, Feb 27 2012

A208292 Primes of the form (n^2+1)/26.

Original entry on oeis.org

17, 37, 457, 601, 701, 877, 997, 2017, 3037, 3257, 4957, 5237, 5701, 10601, 11257, 11677, 14737, 15217, 16001, 17317, 17837, 21577, 22157, 24677, 29717, 34057, 39157, 39937, 41201, 50777, 52201, 53101, 75277, 78101, 79201, 89917, 91097, 93001, 94201, 96137
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

Equivalently, primes of the form (K^2 + (K+1)^2)/13. The
connection to the primes of the form (m^2+1)/26 is given by m=2*K+1 (m is necessarily odd).
The corresponding m=m(n) values are given in A208293(n).
Equivalently, primes of the form (4*T(K)+1)/13, with the
corresponding triangular numbers T(K):=A000217(K), for
K=K(n)=(m(n)-1)/2, given in A208294(n).
For n>=2 the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd a(n)) is
x=m(n). The trivial solution is the class with representative x=1, which also includes -1. For the prime
a(1)=17 the nontrivial solution is 13 (see A002733(2)). Unique nontrivial smallest positive representatives exist for the solutions for any prime of the form 4*k+1, given in A002144. Here the subset with k=k(n)=(a(n)-1)/4 appears, namely 4,9,114,150,175,219,.... For Modd n see a comment on A203571.
These primes with corresponding m values are such that floor(m(n)^2/p(n)) = 5^2, n>=1.

Examples

			a(3)=457, m(3)=A208293(3)=109. T(K(3))=A000217((109-1)/2)=
  A000217(54)=A208294(3)=1485.
		

Crossrefs

Cf. A207337, A207339 (case floor(m^2/p)=3^2); A129307, A027862, A002731 (case floor(m^2/p)=1^2).

Programs

  • Mathematica
    Select[(Range[2000]^2 + 1)/26, PrimeQ] (* T. D. Noe, Feb 28 2012 *)

Formula

a(n) is the n-th member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, the positive one is A208293(n).

A208293 Numbers n such that (n^2+1)/26 is prime.

Original entry on oeis.org

21, 31, 109, 125, 135, 151, 161, 229, 281, 291, 359, 369, 385, 525, 541, 551, 619, 629, 645, 671, 681, 749, 759, 801, 879, 941, 1009, 1019, 1035, 1149, 1165, 1175, 1399, 1425, 1435, 1529, 1539, 1555, 1565, 1581, 1669, 1685, 1695, 1799, 1851, 1919, 1945, 1971
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes (n^2+1)/26 are given in A208292(n).
a(n) is the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd A208292(n)), if n>=2. The trivial solution is the class with representative x=1, which also includes -1. For Modd n see a comment on A203571. For n=1: a(1) = 21 == 13 (Modd 17), and 13 is the smallest positive solution >1.
The unique class of nontrivial solutions of the congruence x^2==1 (Modd p), with p an odd prime, exists for any p of the form 4*k+1, given in A002144. Here a subset of these primes is covered, the ones for k=k(n)=(a(n)^2-25)/(4*26). These values are 4, 9, 114, 150, 175, 219, ...

Examples

			a(3)=109 because (109^2+1)/26 = 457 is prime.
  109 = sqrt(26*457-1) = sqrt(8*1485+1).
		

Crossrefs

Programs

Formula

a(n) = sqrt(26*A208292(n)-1) = sqrt(8*A208294(n)+1), n>=1.

A208294 Triangular numbers T from A000217 such that (4*T+1)/13 is prime.

Original entry on oeis.org

55, 120, 1485, 1953, 2278, 2850, 3240, 6555, 9870, 10585, 16110, 17020, 18528, 34453, 36585, 37950, 47895, 49455, 52003, 56280, 57970, 70125, 72010, 80200, 96580, 110685, 127260, 129795, 133903, 165025, 169653, 172578, 244650
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A208292, where equivalent formulations are found.
The indices of these triangular numbers are given by (A208293(n)-1)/2.

Examples

			a(2) = 120. m(2)= 31: 120 = T((31-1)/2) = T(15)=A000217(15). (4*120+1)/13 = 37 = A208292(2).
		

Crossrefs

Programs

  • Mathematica
    tri = # (# + 1)/2 & /@ Range@ 1000; Select[ tri, PrimeQ[(4 # + 1)/13] &] (* Robert G. Wilson v, Feb 28 2012 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(A208293(n)-1)/2.

A154409 Primes of the form 10n^2+6n+1.

Original entry on oeis.org

17, 53, 109, 281, 397, 1061, 1277, 2341, 2657, 4973, 6917, 8009, 9181, 10433, 13177, 13913, 14669, 18749, 20521, 25301, 26317, 28409, 32833, 42641, 45293, 46649, 56701, 58217, 59753, 67733, 69389, 76213, 77969, 83357, 85193, 87049, 90821
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Subsequence of A207337. Primes of the form n^2+(3n+1)^2. - Bruno Berselli, Jul 17 2012

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 10*n^2+6*n+1]; // Vincenzo Librandi, Jul 17 2012
  • Mathematica
    Select[Table[10n^2+6n+1,{n,0,700}],PrimeQ] (* Vincenzo Librandi, Jul 17 2012 *)

Extensions

Misleading formula removed - R. J. Mathar, Oct 18 2010
Showing 1-6 of 6 results.