A002755 Number of bipartite partitions of n white objects and 6 black ones.
11, 30, 77, 162, 323, 589, 1043, 1752, 2876, 4571, 7128, 10860, 16306, 24051, 35040, 50355, 71609, 100697, 140349, 193784, 265505, 360889, 487214, 653243, 870613, 1153322, 1519658, 1991689, 2597762, 3372107, 4358198, 5608418, 7188632
Offset: 0
Keywords
References
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)
Programs
-
Mathematica
b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^6*2^n, 3^6*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *) nmax = 50; CoefficientList[Series[(11 + 8*x + 6*x^2 - 7*x^4 - 13*x^5 - 19*x^6 - 10*x^7 - 3*x^8 + 7*x^9 + 11*x^10 + 15*x^11 + 6*x^12 - 2*x^14 - 7*x^15 - 4*x^16 - 2*x^17 + 3*x^18 + 2*x^19 - x^20)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
-
Python
from sympy import divisors, isprime from functools import cache @cache def T(n, m): # after Indranil Ghosh in A001055 if isprime(n): return 1 if n <= m else 0 s = sum(T(n//d, d) for d in divisors(n)[1:-1] if d <= m) return s + 1 if n <= m else s def a(n): return (lambda x: T(x, x))(2**n * 3**6) print([a(n) for n in range(33)]) # Michael S. Branicky, Nov 30 2021
Formula
a(n) ~ sqrt(3) * n^2 * exp(Pi*sqrt(2*n/3)) / (40*Pi^6). - Vaclav Kotesovec, Feb 01 2016
Extensions
Edited by Christian G. Bower, Jan 08 2004
Comments