cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A000070 a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0

Views

Author

Keywords

Comments

Also the total number of all different integers in all partitions of n + 1. E.g., a(3) = 7 because the partitions of 4 comprise the sets {1},{1, 2},{2},{1, 3},{4} of different integers and their total number is 7. - Thomas Wieder, Apr 10 2004
With offset 1, also the number of 1's in all partitions of n. For example, 3 = 2+1 = 1+1+1, a(3) = (zero 1's) + (one 1's) + (three 1's), so a(3) = 4. - Naohiro Nomoto, Jan 09 2002. See the Riordan reference p. 184, last formula, first term, for a proof based on Fine's identity given in Riordan, p. 182 (20).
Also, number of partitions of n into parts when there are two kinds of parts of size one.
Also number of graphical forest partitions of 2n+2.
a(n) = count 2 for each partition of n and 1 for each decrement. E.g., the partitions of 4 are 4 (2), 31 (3), 22 (2), 211 (3) and 1111 (2). 2 + 3 + 2 + 3 + 2 = 12. This is related to the Ferrers representation. We can see that taking the Ferrers diagram for each partition of n and adding a new * to all available columns, we generate each partition of n+1, but with repeats (A058884). - Jon Perry, Feb 06 2004
Also the number of 1-transitions among all integer partitions of n. A 1-transition is the removal of a digit "1" from a partition containing at least one "1" and subsequent addition of that "1" to another digit in that partition. This other digit may be a "1" also, but all digits of equal amount are considered as undistinquishable (unlabeled). E.g., for n=6 one has the partition [1113] for which the following two 1-transitions are possible: [1113] --> [123] and [1113] --> [114]. The 1-transitions of n form a partial order (poset). For n=6 one has 12 1-transitions: [111111] --> [11112], [11112] --> [1113], [11112] --> [1122], [1113] --> [114], [1113] --> [123], [1122] --> [123], [1122] --> [222], [123] --> [33], [123] --> [24], [114] --> [15], [114] --> [24], [15] --> [6]. - Thomas Wieder, Mar 08 2005
Also number of partitions of 2n+1 where one of the parts is greater than n (also where there are more than n parts) and of 2n+2 where one of the parts is greater than n+1 (or with more than n+1 parts). - Henry Bottomley, Aug 01 2005
Equals left border of triangle A137633 - Gary W. Adamson, Jan 31 2008
Equals row sums of triangle A027293. - Gary W. Adamson, Oct 26 2008
Convolved with A010815 = [1,1,1,...]. n-th partial sum of A000041 convolved with A010815 = the binomial sequence starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
Equals A036469 convolved with A035363. - Gary W. Adamson, Jun 09 2009
a(A004526(n)) = A025065(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = if n <= 1 then A054225(1,n) else A054225(n,1). - Reinhard Zumkeller, Nov 30 2011
Also the total number of 1's among all hook-lengths in all partitions of n. E.g., a(4)=7 because hooks of the partitions of n = 4 comprise the multisets {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} and their total number of 1's is 7. - T. Amdeberhan, Jun 03 2012
With offset 1, a(n) is also the difference between the sum of largest and the sum of second largest elements in all partitions of n. More generally, the number of occurrences of k in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+1)st largest elements in all partitions of n. And more generally, the sum of the number of occurrences of k, k+1, k+2..k+m in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+m+1)st largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
a(0) = 1 and 2*a(n-1) >= a(n) for all n > 0. Hence a(n) is a complete sequence. - Frank M Jackson, Apr 08 2013
a(n) is the number of conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
a(n) is also the number of unlabeled subgraphs of the n-cycle C_n. For example, for n = 3, there are 3 unlabeled subgraphs of the triangle C_3 with 0 edges, 2 with 1 edge, 1 with 2 edges, and 1 with 3 edges (C_3 itself), so a(3) = 3 + 2 + 1 + 1 = 7. - John P. McSorley, Nov 21 2016
a(n) is also the number of partitions of 2n with all parts either even or equal to 1. Proof: the number of such partitions of 2n with exactly 2k 1's is p(n-k), for k = 0,..,n. Summing over k gives the formula. - Leonard Chastkofsky, Jul 24 2018
a(n) is the total number of polygamma functions that appear in the expansion of the (n+1)st derivative of x! with respect to x. More specifically, a(n) is the number of times the string "PolyGamma" appears in the expansion of D[x!, {x, n + 1}] in Mathematica. For example, D[x!, {x, 3 + 1}] = Gamma[1 + x] PolyGamma[0, 1 + x]^4 + 6 Gamma[1 + x] PolyGamma[0, 1 + x]^2 PolyGamma[1, 1 + x] + 3 Gamma[1 + x] PolyGamma[1, 1 + x]^2 + 4 Gamma[1 + x] PolyGamma[0, 1 + x] PolyGamma[2, 1 + x] + Gamma[1 + x] PolyGamma[3, 1 + x], and we see that the string "PolyGamma" appears a total of a(3) = 7 times in this expansion. - John M. Campbell, Aug 11 2018
With offset 1, also the number of integer partitions of 2n that do not comprise the multiset of vertex-degrees of any multigraph (i.e., non-multigraphical partitions); see A209816 for multigraphical partitions. - Gus Wiseman, Oct 26 2018
Also a(n) is the number of partitions of 2n+1 with exactly one odd part.
Delete the odd part 2k+1, k=0, ..., n, to get a partition of 2n-2k into even parts. There are as many unrestricted partitions of n-k; now sum those numbers from 0 to n to get a(n). - George Beck, Jul 22 2019
In the Young's lattice, a(n) is the number of branches that connect the (n-1)-th layer to the n-th layer. - Shouvik Datta, Sep 19 2021
a(n) is the number of multiset partitions of the multiset {r^n, s^1}, equivalently, factorization patterns of any number m=p^n*q^1 where p and q are primes. - Joerg Arndt, Jan 01 2024
a(n) is the number of positive integers whose divisors are the parts of the partitions of n + 1. - Omar E. Pol, Nov 07 2024

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
.                         Number
Partitions of 6           of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 =                     19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
  (2)  (4)   (6)    (8)     (A)      (C)
       (31)  (42)   (53)    (64)     (75)
             (51)   (62)    (73)     (84)
             (411)  (71)    (82)     (93)
                    (521)   (91)     (A2)
                    (611)   (622)    (B1)
                    (5111)  (631)    (732)
                            (721)    (741)
                            (811)    (822)
                            (6211)   (831)
                            (7111)   (921)
                            (61111)  (A11)
                                     (7221)
                                     (7311)
                                     (8211)
                                     (9111)
                                     (72111)
                                     (81111)
                                     (711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
  (11)  (211)   (2211)    (22211)     (222211)      (2222211)
        (1111)  (3111)    (32111)     (322111)      (3222111)
                (21111)   (41111)     (331111)      (3321111)
                (111111)  (221111)    (421111)      (4221111)
                          (311111)    (511111)      (4311111)
                          (2111111)   (2221111)     (5211111)
                          (11111111)  (3211111)     (6111111)
                                      (4111111)     (22221111)
                                      (22111111)    (32211111)
                                      (31111111)    (33111111)
                                      (211111111)   (42111111)
                                      (1111111111)  (51111111)
                                                    (222111111)
                                                    (321111111)
                                                    (411111111)
                                                    (2211111111)
                                                    (3111111111)
                                                    (21111111111)
                                                    (111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
   1:  {{1, 1, 1, 1, 1, 2}}
   2:  {{1, 1, 1, 1, 1}, {2}}
   3:  {{1, 1, 1, 1, 2}, {1}}
   4:  {{1, 1, 1, 1}, {1, 2}}
   5:  {{1, 1, 1, 1}, {1}, {2}}
   6:  {{1, 1, 1, 2}, {1, 1}}
   7:  {{1, 1, 1, 2}, {1}, {1}}
   8:  {{1, 1, 1}, {1, 1, 2}}
   9:  {{1, 1, 1}, {1, 1}, {2}}
  10:  {{1, 1, 1}, {1, 2}, {1}}
  11:  {{1, 1, 1}, {1}, {1}, {2}}
  12:  {{1, 1, 2}, {1, 1}, {1}}
  13:  {{1, 1, 2}, {1}, {1}, {1}}
  14:  {{1, 1}, {1, 1}, {1, 2}}
  15:  {{1, 1}, {1, 1}, {1}, {2}}
  16:  {{1, 1}, {1, 2}, {1}, {1}}
  17:  {{1, 1}, {1}, {1}, {1}, {2}}
  18:  {{1, 2}, {1}, {1}, {1}, {1}}
  19:  {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
		

References

  • H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.

Crossrefs

A diagonal of A066633.
Also second column of A126442. - George Beck, May 07 2011
Row sums of triangle A092905.
Also row sums of triangle A261555. - Omar E. Pol, Sep 14 2016
Also row sums of triangle A278427. - John P. McSorley, Nov 25 2016
Column k=2 of A292508.

Programs

  • GAP
    List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
    
  • Haskell
    a000070 = p a028310_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Maple
    with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
    Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
    Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
    
  • PARI
    x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
    
  • PARI
    a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
    
  • Python
    from itertools import accumulate
    def A000070iter(n):
        L = [0]*n; L[0] = 1
        def numpart(n):
            S = 0; J = n-1; k = 2
            while 0 <= J:
                T = L[J]
                S = S+T if (k//2)%2 else S-T
                J -= k  if (k)%2 else k//2
                k += 1
            return S
        for j in range(1, n): L[j] = numpart(j)
        return accumulate(L)
    print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
    
  • Python
    # Using function A365676Row. Compare also A365675.
    from itertools import accumulate
    def A000070List(size: int) -> list[int]:
        return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
    print(A000070List(45))  # Peter Luschny, Sep 16 2023
  • Sage
    def A000070_list(leng):
        p = [number_of_partitions(n) for n in range(leng)]
        return [add(p[:k+1]) for k in range(leng)]
    A000070_list(45) # Peter Luschny, Sep 15 2014
    

Formula

Euler transform of [ 2, 1, 1, 1, 1, 1, 1, ...].
log(a(n)) ~ -3.3959 + 2.44613*sqrt(n). - Robert G. Wilson v, Jan 11 2002
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)+1)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
G.f.: (1/(1 - x))*Product_{m >= 1} 1/(1 - x^m).
a(n) seems to have the same parity as A027349(n+1). Comment from James Sellers, Mar 08 2006: that is true.
a(n) = A000041(2n+1) - A110618(2n+1) = A000041(2n+2) - A110618(2n+2). - Henry Bottomley, Aug 01 2005
Row sums of triangle A133735. - Gary W. Adamson, Sep 22 2007
a(n) = A092269(n+1) - A195820(n+1). - Omar E. Pol, Oct 20 2011
a(n) = A181187(n+1,1) - A181187(n+1,2). - Omar E. Pol, Oct 25 2012
From Peter Bala, Dec 23 2013: (Start)
Gupta gives the asymptotic result a(n-1) ~ sqrt(6/Pi^2)* sqrt(n)*p(n), where p(n) is the partition function A000041(n).
Let P(2,n) denote the set of partitions of n into parts k >= 2.
a(n-2) = Sum_{parts k in all partitions in P(2,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, leads to the asymptotic result
a(n-2) ~ (6/Pi^2)*n*(p(n) - p(n-1)) = (6/Pi^2)*A138880(n) as n -> infinity. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n)) + (73*Pi^2 - 1584)/(6912*n)). - Vaclav Kotesovec, Oct 26 2016
a(n) = A024786(n+2) + A024786(n+1). - Vaclav Kotesovec, Nov 05 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(n) = A025065(2n). - Gus Wiseman, Oct 26 2018
a(n - 1) = A000041(2n) - A209816(n). - Gus Wiseman, Oct 26 2018

A054225 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of pairs.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 9, 7, 5, 7, 12, 16, 16, 12, 7, 11, 19, 29, 31, 29, 19, 11, 15, 30, 47, 57, 57, 47, 30, 15, 22, 45, 77, 97, 109, 97, 77, 45, 22, 30, 67, 118, 162, 189, 189, 162, 118, 67, 30, 42, 97, 181, 257, 323, 339, 323, 257, 181, 97, 42, 56, 139, 267, 401, 522, 589, 589, 522, 401, 267, 139, 56
Offset: 0

Views

Author

Marc LeBrun, Feb 04 2000

Keywords

Comments

By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A054225 and A201377 give partitions of pairs into sums of distinct pairs. Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.
Or, triangle T(n,k) of bipartite partitions of n objects, k of which are black.
Or, number of ways to factor p^(n-k)*q^k where p and q are distinct primes.
In the paper by F. C. Auluck: "On partitions of bipartite numbers", p.74, in the formula for fixed m there should be factor 1/m!. The correct asymptotic formula is p(m, n) ~ (sqrt(6*n)/Pi)^m * exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*m!*n). - Vaclav Kotesovec, Feb 01 2016
T(n,k)=T(n,k-n) is the number of multiset partitions of the multiset {1^k, 2^(n-k)}, see example link. - Joerg Arndt, Jan 01 2024
Let R be the ring of power series in two countably infinite sets of variables x_1,y_1,x_2,y_2,... that are invariant under the diagonal action (i.e, the group S of permutations of positive integers acts by w(x_i)=x_{w(i)} and w(y_i)=y_{w(i)}). Then T(n,k) is the dimension of the (n,k)-bigraded piece of R, i.e., the bihomogeneous power series of degree n in the x-variables and k in the y-variables that are S-invariant. - Jeremy L. Martin, Nov 27 2024

Examples

			The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition.
The third row (n=2) is 2, 2, 2 from (2,0) = (1,0)+(1,0), (1,1) = (1,0)+(0,1), (0,2) = (0,1)+(0,1).
In the fourth row (n=3), T(2,1)=4 from (2,1) = (2,0)+(0,1) = (1,0)+(1,1) = (1,0)+(1,0)+(0,1).
The triangle begins:
   1;
   1,  1;
   2,  2,  2;
   3,  4,  4,  3;
   5,  7,  9,  7,   5;
   7, 12, 16, 16,  12,  7;
  11, 19, 29, 31,  29, 19, 11;
  15, 30, 47, 57,  57, 47, 30, 15;
  22, 45, 77, 97, 109, 97, 77, 45, 22;
  ...
A further example: T(2,2) = 9:
[(2,2)],
[(2,1),(0,1)],
[(2,0),(0,2)],
[(2,0),(0,1),(0,1)],
[(1,2),(1,0)],
[(1,1),(1,1)],
[(1,1),(1,0),(0,1)],
[(1,0),(1,0),(0,2)],
[(1,0),(1,0),(0,1),(0,1)].
		

References

  • M. S. Cheema, Tables of partitions of Gaussian integers, National Institute of Sciences of India, New Delhi, 1956.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018

Crossrefs

See A201376 for the same triangle formatted in a different way.
Row sums: A005380. a(2n, n): A002774. a(n, [n/2]): A091437. Cf. A060244.
The outer edges are T(n,0) = T(0,n) = A000041(n).
A054242 gives partitions into sums of distinct pairs.

Programs

  • Haskell
    see Zumkeller link.
  • Maple
    read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=1..11): SERIES2(t1,x,y,6);
  • Mathematica
    rows = 11; se = Series[ Product[ 1/(1-x^(n-k)*y^k), {n, 1, rows}, {k, 0, n}], {x, 0, rows}, {y, 0, rows}]; coes = CoefficientList[ se, {x, y}]; Flatten[ Table[ coes[[n-k+1, k]], {n, 1, rows+1}, {k, 1, n}]] (* Jean-François Alcover, Nov 21 2011, after g.f. *)
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; t[n_, k_] := b[p^(n-k)*q^k, p^(n-k)*q^k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
  • PARI
    {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, n, prod( j=0, i, 1 / (1 - x^i * y^j), 1 + x * O(x^n))),n),k))} /* Michael Somos, Apr 19 2005 */
    

Formula

G.f.: Product_{i>=1, j=0..i} 1/(1-x^(i-j)*y^j).
Series ends ... + 7*x^5 + 12*x^4*y + 16*x^3*y^2 + 16*x^2*y^3 + 12*x*y^4 + 7*y^5 + 5*x^4 + 7*x^3*y + 9*x^2*y^2 + 7*x*y^3 + 5*y^4 + 3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3 + 2*x^2 + 2*x*y + 2*y^2 + x + y + 1.

Extensions

Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201376. Once the errors were corrected, this sequence coincided with A060243, due to N. J. A. Sloane, Mar 22 2001, which included edits by Vladeta Jovovic, Mar 23 2001, and Christian G. Bower, Jan 08 2004. The two entries have now been merged.

A002774 Number of bipartite partitions of n white objects and n black ones.

Original entry on oeis.org

1, 2, 9, 31, 109, 339, 1043, 2998, 8406, 22652, 59521, 151958, 379693, 927622, 2224235, 5236586, 12130780, 27669593, 62229990, 138095696, 302673029, 655627975, 1404599867, 2977831389, 6251060785, 12999299705, 26791990052, 54750235190, 110977389012
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n * q^n where p and q are distinct primes.

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, see p(n,n), page 778. - N. J. A. Sloane, Dec 30 2018
  • A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
  • A. Murthy, Program for finding out the number of Smarandache factor partitions. (To be published in Smarandache Notions Journal).
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4, 1.14.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005380.
Cf. A219554. Column k=2 of A219727. - Alois P. Heinz, Nov 26 2012
Main diagonal of A054225 if that entry is drawn as a square array. - N. J. A. Sloane, Dec 30 2018

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(6^n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    max = 26; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max}, {k, 0, n}], {x, 0, 2max}, {y, 0, 2max}]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max}, {y, 0, 2max}], {x, y}]; a[n_] := coes[[n+1, n+1]]; Table[a[n], {n, 0, max} ](* Jean-François Alcover, Dec 06 2011 *)

Formula

a(n) = A054225(2n, n) = A091437(2n).
a(n) ~ Zeta(3)^(19/36) * exp(3*Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (6*Zeta(3)^(1/3)) + Zeta'(-1) - Pi^4/(432*Zeta(3))) / (sqrt(3) * (2*Pi)^(3/2) * n^(55/36)). - Vaclav Kotesovec, Jan 30 2016
Formula (25) in the article by Auluck is incorrect. The correct formula is: p(n,n) ~ c^(19/12) * exp(3*c*n^(2/3) + 3*d*n^(1/3) + Zeta'(-1) - 3*d^2/(4*c)) / (sqrt(3) * (2*Pi)^(3/2) * n^(55/36)), where c = Zeta(3)^(1/3), d = Zeta(2)/(3*c). Also formula (24) is incorrect. - Vaclav Kotesovec, Jan 30 2016
From Vaclav Kotesovec, Feb 04 2016: (Start)
The correct formula (24) is p(m,n) ~ c^(7/4)/(2*Pi*sqrt(3)) * exp(3*c*(m*n)^(1/3) + 3*d*(m+n)/(2*(m*n)^(1/3)) - 19*log(m*n)/24 - ((m/n - 2*n/m)*log(m) + (n/m - 2*m/n)*log(n))/36 - (m/n + n/m)*(log(c)/12 + Zeta'(-1) - 1/12 + 3*d^2/(4*c)) + 3*d^2/(4*c) - 3*log(2*Pi)/4 + fi((n/m)^(1/2))),
where m and n are of the same order, c = Zeta(3)^(1/3), d = Zeta(2)/(3*c) and fi(alfa) = Integral_{t=0..infinity} (1/t)*(1/(exp(alfa*t)-1)/(exp(t/alfa)-1) - (alfa/t)/(exp(alfa*t)-1) - ((1/alfa)/t)/(exp(t/alfa)-1) + 1/t^2 + (1/4)/(exp(alfa*t)-1) + (1/4)/(exp(t/alfa)-1) - (alfa/4)/t - ((1/4)/alfa)/t).
If m = n then alfa = 1 and fi(1) = 3*Zeta'(-1) + log(2*Pi)/4 - 1/6.
For the asymptotic formula for fixed m see A054225.
(End)

Extensions

Corrected using A000491.
Edited by Christian G. Bower, Jan 08 2004

A000291 Number of bipartite partitions of n white objects and 2 black ones.

Original entry on oeis.org

2, 4, 9, 16, 29, 47, 77, 118, 181, 267, 392, 560, 797, 1111, 1541, 2106, 2863, 3846, 5142, 6808, 8973, 11733, 15275, 19753, 25443, 32582, 41569, 52770, 66757, 84078, 105555, 131995, 164566, 204450, 253292, 312799, 385285, 473183, 579722, 708353, 863553
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^2 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^2}. - Joerg Arndt, Jan 01 2024

Examples

			a(2) = 9: let p = 2 and q = 3, p^2*q^2 = 36; there are 9 factorizations: (36), (18*2), (12*3), (9*4), (9*2^2), (6*6), (6*3*2), (4*3^2), (3^2*2^2).
		

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • Amarnath Murthy, "Generalization of Smarandache Factor Partition introducing Smarandache Factor Partition". Smarandache Notions Journal, 1-2-3, vol. 11, 2000.
  • Amarnath Murthy, Program for finding out the number of Smarandache Factor Partitions. Smarandache Notions Journal, Vol. 13, 2002.
  • Amarnath Murthy, e-book, MS LIT format, "Ideas on Smarandache Notions".
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.9, 1.14.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 2; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[1/(1-x)*(1 + 1/(1-x^2))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 2 then A054225(2,n) else A054225(n,2). - Reinhard Zumkeller, Nov 30 2011
From Vaclav Kotesovec, Feb 01 2016, corrected Nov 05 2016: (Start)
a(n) = A000070(n) + A000097(n).
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 83*Pi/(24*sqrt(6*n))).
(End)

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000412 Number of bipartite partitions of n white objects and 3 black ones.

Original entry on oeis.org

3, 7, 16, 31, 57, 97, 162, 257, 401, 608, 907, 1325, 1914, 2719, 3824, 5313, 7316, 9973, 13495, 18105, 24132, 31938, 42021, 54948, 71484, 92492, 119120, 152686, 194887, 247693, 313613, 395547, 497154, 622688, 777424, 967525, 1200572, 1485393, 1832779, 2255317
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^3 where p and q are distinct primes.
Number of Gaussian partitions of n+3*i or 3+n*i where a "Gaussian partition" is a way of writing a Gaussian integer with nonnegative parts as a sum of Gaussian integers with nonnegative parts, imaginary numbers and real numbers. For k = 3+1*i (where i is the imaginary unit), the a(1)=7 ways to write k (where parentheses represent a complex number and a lack of them represents a sum of a real and imaginary number) would be 3+i, (3+i), 2+1+i, (2+i)+1, (1+i)+2, 1+1+1+i, (1+i)+1+1. - Yali Harrary, Nov 20 2022
a(n) is the number of multiset partitions of the multiset {r^n, s^3}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 3; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(3 + x - x^2 - 2*x^3 - x^4 + x^5)/((1-x)*(1-x^2)*(1-x^3)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 3 then A054225(3,n), otherwise a(n) = A054225(n,3). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * sqrt(n) / (2*sqrt(2)*Pi^3). - Vaclav Kotesovec, Feb 01 2016
a(n) = A000098(n) + A000070(n) + A014153(n). - Yali Harrary, Nov 20 2022

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000465 Number of bipartite partitions of n white objects and 4 black ones.

Original entry on oeis.org

5, 12, 29, 57, 109, 189, 323, 522, 831, 1279, 1941, 2876, 4215, 6066, 8644, 12151, 16933, 23336, 31921, 43264, 58250, 77825, 103362, 136371, 178975, 233532, 303268, 391831, 504069, 645520, 823419, 1046067, 1324136, 1669950, 2099104, 2629685, 3284325, 4089300
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^4 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^4}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 4; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(5 + 2*x - 3*x^3 - 5*x^4 - x^5 + 3*x^7 + x^8 - x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 4 then A054225(4,n) else A054225(n,4). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ sqrt(3) * n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000491 Number of bipartite partitions of n white objects and 5 black ones.

Original entry on oeis.org

7, 19, 47, 97, 189, 339, 589, 975, 1576, 2472, 3804, 5727, 8498, 12400, 17874, 25433, 35818, 49908, 68939, 94378, 128234, 172917, 231630, 308240, 407804, 536412, 701910, 913773, 1184022, 1527165, 1961432, 2508762, 3196473, 4057403, 5132066
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^5 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^5}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A054225.
Cf. A005380.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(243*2^n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^5*2^n, 3^5*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(7 + 5*x + 2*x^2 - 2*x^3 - 7*x^4 - 9*x^5 - 6*x^6 + x^7 + 4*x^8 + 6*x^9 + 3*x^10 + x^11 - 3*x^12 - 2*x^13 + x^14)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 5 then A054225(5,n) else A054225(n,5). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A002756 Number of bipartite partitions of n white objects and 7 black ones.

Original entry on oeis.org

15, 45, 118, 257, 522, 975, 1752, 2998, 4987, 8043, 12693, 19584, 29719, 44324, 65210, 94642, 135805, 192699, 270822, 377048, 520624, 713123, 969784, 1309646, 1757447, 2343931, 3108553, 4100220, 5380964, 7027376, 9135769, 11824507
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^7 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^7}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 7 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] :=  b[n, k] = If[n>k, 0, 1] +  If[PrimeQ[n], 0,  Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^7, p^n*q^7]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(15 + 15*x + 13*x^2 + 6*x^3 - 5*x^4 - 15*x^5 - 28*x^6 - 34*x^7 - 26*x^8 - 10*x^9 + 6*x^10 + 25*x^11 + 27*x^12 + 31*x^13 + 20*x^14 + 3*x^15 - 9*x^16 - 16*x^17 - 17*x^18 - 9*x^19 - 4*x^20 + 8*x^22 + 6*x^23 + 4*x^24 - 3*x^25 - 3*x^26 + x^27)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 7 then A054225(7,n) else A054225(n,7). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(5/2) * exp(Pi*sqrt(2*n/3)) / (140*sqrt(2)*Pi^7). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A201376 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of pairs.

Original entry on oeis.org

1, 1, 2, 2, 4, 9, 3, 7, 16, 31, 5, 12, 29, 57, 109, 7, 19, 47, 97, 189, 339, 11, 30, 77, 162, 323, 589, 1043, 15, 45, 118, 257, 522, 975, 1752, 2998, 22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 30, 97, 267, 608, 1279, 2472, 4571, 8043, 13715, 22652, 42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2011

Keywords

Comments

By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A201377 and A054225 give partitions of pairs into sums of distinct pairs.
Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.

Examples

			Partitions of (3,1) into positive pairs, T(3,1) = 7:
(3,1),
(3,0) + (0,1),
(2,1) + (1,0),
(2,0) + (1,1),
(2,0) + (1,0) + (0,1),
(1,1) + (1,0) + (1,0),
(1,0) + (1,0) + (1,0) + (0,1).
First ten rows of triangle:
0:                      1
1:                    1  2
2:                  2  4  9
3:                3  7  16  31
4:              5  12  29  57  109
5:            7  19  47  97  189  339
6:          11  30  77  162  323  589  1043
7:        15  45  118  257  522  975  1752  2998
8:      22  67  181  401  831  1576  2876  4987  8406
9:    30  97  267  608  1279  2472  4571  8043  13715  22652
X:  42  139  392  907  1941  3804  7128  12693  21893  36535  59521
		

Crossrefs

T(n,0) = A000041(n);
T(1,k) = A000070(k), k <= 1; T(n,1) = A000070(n), n > 1;
T(2,k) = A000291(k), k <= 2; T(n,2) = A000291(n), n > 2;
T(3,k) = A000412(k), k <= 3; T(n,3) = A000412(n), n > 3;
T(4,k) = A000465(k), k <= 4; T(n,4) = A000465(n), n > 4;
T(5,k) = A000491(k), k <= 5; T(n,5) = A000491(n), n > 5;
T(6,k) = A002755(k), k <= 6; T(n,6) = A002755(n), n > 6;
T(7,k) = A002756(k), k <= 7; T(n,7) = A002756(n), n > 7;
T(8,k) = A002757(k), k <= 8; T(n,8) = A002757(n), n > 8;
T(9,k) = A002758(k), k <= 9; T(n,9) = A002758(n), n > 9;
T(10,k) = A002759(n), k <= 10; T(n,10) = A002759(n), n > 10;
T(n,n) = A002774(n).
See A054225 for another version.

Programs

  • Haskell
    -- see link.
  • Mathematica
    max = 10; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max }, {k, 0, n}], {x, 0, 2max }, {y, 0, 2max }]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max }, {y, 0, 2max }], {x, y}]; t[n_, k_] := coes[[n+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 05 2011 *)
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n] , 1|n]}]]; t[n_, k_] := b[p^n*q^k, p^n*q^k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)

Formula

For references, programs and g.f. see A054225.

Extensions

Entry revised by N. J. A. Sloane, Nov 30 2011

A002757 Number of bipartite partitions of n white objects and 8 black ones.

Original entry on oeis.org

22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 13715, 21893, 34134, 52327, 78785, 116982, 171259, 247826, 354482, 502090, 704265, 979528, 1351109, 1849932, 2514723, 3396262, 4557867, 6081466, 8068930, 10650479, 13987419, 18283999
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^8 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^8}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 8 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^8, p^n*q^8]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(22 + 23*x + 25*x^2 + 16*x^3 + 4*x^4 - 14*x^5 - 34*x^6 - 50*x^7 - 65*x^8 - 52*x^9 - 32*x^10 + 5*x^11 + 27*x^12 + 57*x^13 + 67*x^14 + 65*x^15 + 42*x^16 + 15*x^17 - 14*x^18 - 34*x^19 - 40*x^20 - 46*x^21 - 26*x^22 - 8*x^23 + 8*x^24 + 11*x^25 + 18*x^26 + 14*x^27 + 9*x^28 + 3*x^29 - 7*x^30 - 7*x^31 - 6*x^32 + 3*x^33 + 3*x^34 - x^35)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 8 then A054225(8,n) else A054225(n,8). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*sqrt(3) * n^3 * exp(Pi*sqrt(2*n/3)) / (1120*Pi^8). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004
Showing 1-10 of 20 results. Next