cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002771 Number of terms in a skew determinant: a(n) = (A000085(n) + A081919(n))/2.

Original entry on oeis.org

1, 2, 4, 13, 41, 226, 1072, 9374, 60958, 723916, 5892536, 86402812, 837641884, 14512333928, 162925851376, 3252104882056, 41477207604872, 937014810365584, 13380460644770848, 337457467862898896, 5333575373478669136, 148532521250931168352
Offset: 1

Views

Author

Keywords

References

  • T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n, 2*k) * doublefactorial(2*k-1) * (1+doublefactorial(2*k-1))/2, k=0..floor(n/2)), n=1..40); # Sean A. Irvine, Aug 18 2014
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<5, [1$2, 2, 4, 13][n+1],
         ((2*n-5) *a(n-1) +(n-1)*(n^2-4*n+1) *a(n-2)
          -(2*n-5)*(n-1)*(n-2) *a(n-3))/(n-4)
          +(n-1)*(n-2)*(n-3) *(a(n-5)-a(n-4)))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    a[n_] := Sum[Binomial[n, 2*k] * (2*k-1)!! * (1 + (2*k-1)!!) / 2, {k, 0, n/2}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 26 2015, after Sean A. Irvine *)
  • Sage
    def A002771(n):
        A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
        A081919 = lambda n: hypergeometric([1/2,-n/2,(1-n)/2], [], 4)
        return ((A000085(n) + A081919(n))/2).n()
    [round(A002771(n)) for n in (1..22)]  # Peter Luschny, Aug 21 2014

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * (2*k-1)!! * (1 + (2*k-1)!!) / 2. - Sean A. Irvine, Aug 18 2014
(-n+4)*a(n) +(2*n-5)*a(n-1) +(n-1)*(n^2-4*n+1)*a(n-2) -(2*n-5)*(n-1)*(n-2)*a(n-3) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 19 2014
a(n) = (hyper2F0([-n/2,(1-n)/2],[],2)+hyper3F0([1/2,-n/2,(1-n)/2],[],4))/2. - Peter Luschny, Aug 21 2014
a(n) ~ ((-1)^n*exp(-1) + exp(1)) * n^n / (2*exp(n)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Sean A. Irvine, Aug 18 2014
Expanded definition from Peter Luschny, Aug 21 2014