cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002497 Numbers N in A002809 such that there is rho > 0 such that for all A > 0, A008475(A)-A008475(N) >= rho*log(A/N).

Original entry on oeis.org

3, 12, 60, 420, 4620, 60060, 180180, 360360, 6126120, 116396280, 2677114440, 77636318760, 2406725881560, 89048857617720, 3651003162326520, 156993135980040360, 313986271960080720, 14757354782123793840, 14757354782123793840, 782139803452561073520, 46146248403701103337680
Offset: 1

Views

Author

Keywords

Comments

The numbers contain the starred entries on pp. 187-190 of Nicolas. It is a subsequence of A002809 by selecting only elements of a set/property "G" (page 150). G contains all N such that a real, strictly positive rho exists such that for all strictly positive integers A we have l(A)-l(N) >= rho*log(A/N). The function l()=A008475() is defined on page 139. - R. J. Mathar, Mar 23 2012
These numbers were named superior l-composite numbers (nombres l-composes superieurs, the function l(n) is A002809) by Massias, in analogy to Ramanujan's superior highly composite numbers (A002201). Deléglise and Nicolas named these numbers l-superchampion numbers. They are used by Deléglise et al. in calculating values of Landau's function g(n) (A000793). - Amiram Eldar, Aug 23 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited by M. F. Hasler, Mar 29 2015
a(16)-a(21) from the paper by Massias added by Amiram Eldar, Aug 23 2019

A159685 Maximal product of distinct primes whose sum is <= n.

Original entry on oeis.org

1, 2, 3, 3, 6, 6, 10, 15, 15, 30, 30, 42, 42, 70, 105, 105, 210, 210, 210, 210, 330, 330, 462, 462, 770, 1155, 1155, 2310, 2310, 2730, 2730, 2730, 2730, 4290, 4290, 6006, 6006, 10010, 15015, 15015, 30030, 30030, 30030, 30030, 39270, 39270, 46410, 46410
Offset: 1

Views

Author

Wouter Meeussen, Apr 19 2009, May 02 2009

Keywords

Comments

Equivalently, largest value of the LCM of the partitions of n into primes.
Equivalently, maximal number of times a permutation of length n, with prime cycle lengths, can operate on itself before returning to the initial permutation.
If the requirement that primes are distinct is dropped, this becomes A000792. - Charles R Greathouse IV, Jul 10 2012

Examples

			A permutation of length 10 can have prime cycle lengths of 2+3+5; so when repeatedly applied to itself, can produce at most 2*3*5 different permutations.
The products of distinct primes whose sum is <= 10 are 1 (the empty product), 2, 3, 5, 7, 2*3=6, 2*5=10, 2*7=14, 3*5=15, 3*7=21, and 2*3*5=30. The maximum is 30, so a(10) = 30. - _Jonathan Sondow_, Jul 06 2012
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n,i) option remember; local p; p:= ithprime(max(i,1));
          `if`(n=0, 1, `if`(i<1, 0,
           max(b(n, i-1), `if`(p>n, 0, b(n-p, i-1)*p))))
        end:
    a:= proc(n) option remember;
         `if`(n=0, 1, max(b(n, pi(n)), a(n-1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 04 2012
  • Mathematica
    temp=Series[Times @@ (1/(1-q[ # ] x^#)& /@ Prepend[Prime /@ Range[24],1]),{x,0,Prime[24]}]; Table[Max[List @@ Expand[Coefficient[temp,x^n]]/. q[a_]^_ ->q[a] /.q->Identity],{n,64}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Module[{p = Prime[Max[i, 1]]}, If[n == 0, 1, If[i < 1, 0, Max[b[n, i-1], If[p > n, 0, b[n-p, i-1]*p]]]]]; a[n_] := a[n] = If[n == 0, 1, Max[b[n, PrimePi[n]], a[n-1]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 05 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(n) <= A002809(n) and A008475(a(n)) <= n (see (1.2) and (1.4) in Deléglise-Nicolas 2012). - Jonathan Sondow, Jul 04 2012.

A006644 Indices of records in Landau's function A000793.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 19, 23, 25, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 43, 47, 49, 53, 57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 76, 77, 78, 79, 83, 85, 89, 93, 95, 97, 101, 102, 106, 108, 112, 118, 120, 126, 128, 130, 131, 132
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; order[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Join[{0}, Position[Differences[Array[order, 133, 0]], ?Positive] // Flatten ] (* _Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)

A211168 Exponent of alternating group An.

Original entry on oeis.org

1, 1, 3, 6, 30, 60, 420, 420, 1260, 2520, 27720, 27720, 360360, 360360, 360360, 360360, 6126120, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 1

Views

Author

Alexander Gruber, Jan 31 2013

Keywords

Comments

a(n) is the smallest natural number m such that g^m = 1 for any g in An.
If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.

Examples

			For n = 7, lcm{1,...,5,7} = 420.
		

Crossrefs

Even entries given by the sequence A076100, or the odd entries in the sequence A003418.
The records of this sequence are a subsequence of A002809 and A126098.

Programs

  • Magma
    for n in [1..40] do
    Exponent(AlternatingGroup(n));
    end for;
    
  • Magma
    for n in [1..40] do
    if n mod 2 eq 0 then
    L := [1..n-1];
    else
    L := Append([1..n-2],n);
    end if;
    LCM(L);
    end for;
    
  • Mathematica
    Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],
      LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)
    a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =
      If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]
  • PARI
    a(n)=lcm(if(n%2,concat([2..n-2],n),[2..n-1])) \\ Charles R Greathouse IV, Mar 02 2014

Formula

Explicit:
a(n) = lcm{1, ..., n-1} if n is even.
= lcm{1, ..., n-2, n} if n is odd.
Recursive:
Let a(1) = a(2) = 1 and a(3) = 3. Then
a(n) = lcm{a(n-1), n-2} if n is even.
= lcm{a(n-2), n-3, n} if n is odd.
a(n) = A003418(n)/(1 + [n in A228693]) for n > 1. - Charlie Neder, Apr 25 2019

A214096 Smallest m such that prime(i) + prime(i-1) < prime(2*i-n) for all i>=m.

Original entry on oeis.org

3, 4, 7, 8, 18, 19, 27, 28, 36, 39, 50, 50, 53, 70, 71, 72, 77, 85, 105, 105, 106, 108, 110, 111, 114, 143, 144, 144, 149, 149, 153, 161, 165, 172, 173, 173, 226, 228, 228, 229, 231, 232, 236, 237, 238, 245, 245, 246, 248, 300, 300, 301, 302, 303, 315, 315
Offset: 1

Views

Author

Jonathan Vos Post, Jul 04 2012

Keywords

Comments

Formula given in Deléglise and Nicolas, Lemma 2.4, p.6. A002809 and A159685 are given explicitly on p.2. Additional values given: a(3675) = 33127.

Crossrefs

Programs

  • Mathematica
    a[1] = 3;
    a[n_] := a[n] = Module[{}, For[m = a[n-1], True, m++, If[AllTrue[Range[m, 2 m], Prime[#] + Prime[# - 1] < Prime[2# - n]&], Return[m]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 27 2018 *)

Formula

a(n) is minimal such that prime(i) + prime(i-1) < prime(2*i-n) for i >= a(n).

Extensions

More terms from Alois P. Heinz, Jul 07 2012
Showing 1-5 of 5 results.