cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexander Gruber

Alexander Gruber's wiki page.

Alexander Gruber has authored 10 sequences.

A239202 Multiplicative order of phi(n) modulo n when gcd(phi(n),n)=1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 10, 6, 2, 2, 2, 2, 8, 2, 2, 2, 12, 2, 22, 2, 2, 15, 2, 2, 4, 28, 2, 12, 36, 2, 2, 2, 2, 2, 2, 44, 48, 20, 2, 2, 18, 2, 2, 46, 6, 28, 2, 2, 2, 52, 22, 2, 2, 2, 58, 2, 2, 18, 80, 2, 2, 2, 2, 45, 2, 70, 28, 6, 48, 2, 2, 2
Offset: 1

Author

Alexander Gruber, Mar 12 2014

Keywords

Examples

			For n = 8: the 8th entry of A003277 is 15, and phi(15) = 8 has multiplicative order 4 modulo 15, so a(8) = 4.
		

Crossrefs

Indexed by A003277.

Programs

  • Mathematica
    MultiplicativeOrder[EulerPhi[#], #] & /@ Select[Range[1000], GCD[#, EulerPhi[#]] == 1 &]
  • PARI
    lista(nn) = {for(n=1, nn, my(ephi = eulerphi(n)); if (gcd(ephi, n) == 1, print1(znorder(Mod(ephi, n)), ", ")););} \\ Michel Marcus, Feb 09 2015

A211877 Number of involutions in GL(n,4).

Original entry on oeis.org

1, 21, 673, 102273, 47663617, 110981851137, 815432848809985, 30052835284679819265, 3519512226295269640765441, 2069751512310185039905834926081, 3874510079394593253089862950754189313, 36431456010689490638771956423547489198538753
Offset: 1

Author

Alexander Gruber, Feb 12 2013

Keywords

Programs

  • Maple
    A211877 := proc(n)
        add( 4^(k*(n-k))*A022168(n,k),k=1..n) ;
    end proc: # R. J. Mathar, Apr 26 2013
  • Mathematica
    Sum[q^(k (n - k)) QBinomial[n, k, q], {k, 1, n}]

A211876 Primes of the form Phi(phi(k),2), the phi(k)-th cyclotomic polynomial evaluated at 2, where phi is the Euler totient function.

Original entry on oeis.org

3, 5, 11, 13, 17, 241, 257, 331, 683, 5419, 61681, 65537, 2796203, 15790321, 22366891, 4278255361, 4562284561, 77158673929, 1133836730401, 18446744069414584321, 291280009243618888211558641, 78919881726271091143763623681, 84159375948762099254554456081, 84179842077657862011867889681
Offset: 1

Author

Alexander Gruber, Feb 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    s = Union[Table[EulerPhi[n], {n, 2000}]]; t = Union[Select[Table[ Cyclotomic[ n, 2], {n, s}], PrimeQ]]; Select[t, # < 10^30 &]
  • PARI
    s=Set([]);
    for (n=1,10^3, my(a=polcyclo(eulerphi(n),2)); if(ispseudoprime(a), s=setunion(s,[a])));
    v211876=s  /* Joerg Arndt, Apr 13 2013 */

A214082 Size of conjugacy classes of GL(4,2) arranged by order of elements in that class.

Original entry on oeis.org

1, 105, 210, 112, 1120, 1260, 2520, 1344, 1680, 3360, 2880, 2880, 1344, 1344
Offset: 1

Author

Alexander Gruber, Feb 15 2013

Keywords

Programs

  • Magma
    [ g[2] : g in ConjugacyClasses(GL(4,2)) ];

A211874 Primes of the form Phi_k(3), the k-th cyclotomic polynomial evaluated at 3.

Original entry on oeis.org

2, 7, 13, 61, 73, 547, 757, 1093, 4561, 6481, 368089, 398581, 530713, 797161, 42521761, 47763361, 2413941289, 23535794707, 282429005041, 374857981681, 144542918285300809, 150094634909578633, 13490012358249728401, 82064241848634269407
Offset: 1

Author

Alexander Gruber, Feb 12 2013

Keywords

Crossrefs

Primes in A019321.

Programs

  • Mathematica
    Sort[Select[Cyclotomic[Range[1000], 3], PrimeQ]]

A211875 Primes of the form Phi(phi(k),3), the phi(k)-th Cyclotomic polynomial evaluated at 3, where phi is the Euler totient function.

Original entry on oeis.org

2, 7, 61, 73, 6481, 530713, 42521761, 47763361, 23535794707, 282429005041, 374857981681, 150094634909578633, 13490012358249728401, 105919308797935444986721, 1076050302914923449767311155851656076154481
Offset: 1

Author

Alexander Gruber, Feb 12 2013

Keywords

Programs

  • Mathematica
    Union[Select[Cyclotomic[EulerPhi[#], x] /. x -> 3 & /@ Range[1000], PrimeQ]]

A211391 The number of divisors d of n! such that d < A000793(n) (Landau's function g(n)) and the symmetric group S_n contains no elements of order d.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 2, 2, 6, 4, 15, 15, 24, 29, 33, 63, 55, 126, 117, 110, 103, 225, 212, 288, 282, 319, 428, 504, 774, 859, 943, 924, 1336, 1307, 1681, 1869, 2097, 2067, 2866, 3342, 3487, 5612, 5567, 5513, 5549, 9287, 9220, 11594, 11524, 11481, 11403, 18690
Offset: 1

Author

Alexander Gruber, Feb 07 2013

Keywords

Comments

This sequence gives the number of divisors d of |S_n| such that d < Lambda(n) (where Lambda(n) = the largest order of an element in S_n) for which S_n contains no element of order d. These divisors constitute a set of 'missing' element orders of S_n.
For computational purposes, the smallest divisor d0(n) of n! = |S_n| for which S_n has no element of order d0(n) is the smallest divisor of n! which is not the least common multiple of an integer partition of n. Thus d0(n) is given by the smallest prime power >= n+1 that is not prime (with the exception of n = 3 and 4, for which d0(n) = 6).

Examples

			For n = 7, we refer to the following table:
Symmetric Group on 7 letters.
  # of elements of order  1 ->    1
  # of elements of order  2 ->  231
  # of elements of order  3 ->  350
  # of elements of order  4 ->  840
  # of elements of order  5 ->  504
  # of elements of order  6 -> 1470
  # of elements of order  7 ->  720
  # of elements of order  8 ->    0
  # of elements of order  9 ->    0
  # of elements of order 10 ->  504
  # of elements of order 12 ->  420
  (All other divisors of 7! -> 0.)
So there are two missing element orders in S_7, whence a(7) = 2.
		

Crossrefs

d0(n) is equal to A167184(n) for n >= 5.
Cf. A000793 (Landau's function g(n)), A057731, A211392.

Programs

  • Magma
    for n in [1..25] do
    D := Set(Divisors(Factorial(n)));
    O := { LCM(s) : s in Partitions(n) };
    L := Max(O);
    N := D diff O;
    #{ n : n in N | n lt L };
    end for;

Extensions

More terms from Alois P. Heinz, Feb 11 2013

A211392 The number of divisors d of n! such that the symmetric group on n letters contains no elements of order d.

Original entry on oeis.org

0, 0, 1, 4, 10, 24, 51, 85, 146, 254, 520, 769, 1557, 2561, 3997, 5333, 10705, 14633, 29315, 40970, 60722, 95912, 191902, 242769, 339909, 532088, 677224, 917112, 1834373, 2332596, 4665375, 5529352, 7864049, 12164824, 16422587, 19595164, 39190653, 60465758
Offset: 1

Author

Alexander Gruber, Feb 07 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, b(n, i-1)+
          add(b(n-p^j, i-1), j=1..ilog[p](n)))
        end:
    a:= n-> numtheory[tau](n!) -b(n, numtheory[pi](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, b[n, i-1] + Sum[b[n-p^j, i-1], {j, 1, Floor@Log[p, n]}]]];
    a[n_] := DivisorSigma[0, n!] - b[n, PrimePi[n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)

Formula

a(n) = A000005(n!) - A009490(n).

Extensions

More terms from Alois P. Heinz, Feb 11 2013

A211171 Exponent of general linear group GL(n,2).

Original entry on oeis.org

1, 6, 84, 420, 26040, 78120, 9921240, 168661080, 24624517680, 270869694480, 554470264600560, 7208113439807280, 59041657185461430480, 2538791258974841510640, 383357480105201068106640, 98522872387036674503406480, 25826982813282567927671981480160
Offset: 1

Author

Alexander Gruber, Jan 31 2013

Keywords

Comments

a(n) is the smallest integer for which x^a(n) = 1 for any x in GL(n,2).

Examples

			n = 2: GL(2,2) is isomorphic to S3 which has exponent 6 (see: A003418).
n = 3: The set of element orders of GL(3,2) is {1,2,3,4,7} so the exponent is 84.
n = 5: The set of element orders of GL(5,2) is {1,2,3,4,5, 6,7,8,12,14, 15,21,31} so the exponent is 26040 (see: A053651).
		

Crossrefs

Cf. A006951 (number of conjugacy classes in GL(n,2)).

Programs

  • Magma
    for n in [1..18] do
    Exponent(GL(n,2));
    end for;
    
  • Maple
    with(numtheory):
    a:= proc(n) local t; t:= 2^ilog2(n);
          `if`(tAlois P. Heinz, Feb 04 2013
  • Mathematica
    f[q_, n_] := With[{p = Sort[Divisors[q]][[2]]},
      p^Ceiling[Log[p, n]] Product[Cyclotomic[k, q], {k, n}]]; f[2,#]&/@Range[100]
  • PARI
    a(n) = 2^ceil(log(n)/log(2))*prod(k=1, n, polcyclo(k, 2)); \\ Michel Marcus, Jan 29 2020

Formula

a(n) = 2^ceiling(log_2(n)) * Product_{k=1..n} (k-th cyclotomic polynomial evaluated at 2).
a(n) = A034268(n)*A062383(n+1). - Michel Marcus, Jul 29 2022

A211168 Exponent of alternating group An.

Original entry on oeis.org

1, 1, 3, 6, 30, 60, 420, 420, 1260, 2520, 27720, 27720, 360360, 360360, 360360, 360360, 6126120, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 1

Author

Alexander Gruber, Jan 31 2013

Keywords

Comments

a(n) is the smallest natural number m such that g^m = 1 for any g in An.
If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.

Examples

			For n = 7, lcm{1,...,5,7} = 420.
		

Crossrefs

Even entries given by the sequence A076100, or the odd entries in the sequence A003418.
The records of this sequence are a subsequence of A002809 and A126098.

Programs

  • Magma
    for n in [1..40] do
    Exponent(AlternatingGroup(n));
    end for;
    
  • Magma
    for n in [1..40] do
    if n mod 2 eq 0 then
    L := [1..n-1];
    else
    L := Append([1..n-2],n);
    end if;
    LCM(L);
    end for;
    
  • Mathematica
    Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],
      LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)
    a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =
      If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]
  • PARI
    a(n)=lcm(if(n%2,concat([2..n-2],n),[2..n-1])) \\ Charles R Greathouse IV, Mar 02 2014

Formula

Explicit:
a(n) = lcm{1, ..., n-1} if n is even.
= lcm{1, ..., n-2, n} if n is odd.
Recursive:
Let a(1) = a(2) = 1 and a(3) = 3. Then
a(n) = lcm{a(n-1), n-2} if n is even.
= lcm{a(n-2), n-3, n} if n is odd.
a(n) = A003418(n)/(1 + [n in A228693]) for n > 1. - Charlie Neder, Apr 25 2019