A002820 Number of n X n invertible binary matrices A such that A+I is invertible.
1, 0, 2, 48, 5824, 2887680, 5821595648, 47317927329792, 1544457148312846336, 202039706313624586813440, 105823549214125066767168438272, 221819704567105547916502447159246848, 1860304261534304703934696550224148083769344, 62413833036707798343389591015829588620560344023040
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..55
- Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
- P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Kent Morrison, Matrices over F_q with no eigenvalues of 0 or 1
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Index entries for sequences related to binary matrices
Programs
-
Maple
# (Maple program based on Dai et al. from N. J. A. Sloane, Aug 10 2011) N:=proc(n,i) option remember; if i = 1 then 1 else (2^n-2^(i-1))*N(n,i-1); fi; end; Oh:=proc(n) option remember; local r; global N; if n=0 then RETURN(1) elif n=1 then RETURN(0) else add( 2^(r-2)*N(n,r)*2^(r*(n-r))*Oh(n-r), r=2..n); fi; end; [seq(Oh(n),n=0..15)];
-
Mathematica
ni[n_, i_] := ni[n, i] = If[i == 1, 1, (2^n - 2^(i-1))*ni[n, i-1]]; a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[ 2^(r-2)*ni[n, r]*2^(r*(n-r))*a[n-r], {r, 2, n}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 19 2012, after Maple *)
Formula
Reference gives a recurrence.
a(n) = 2^(n(n-1)/2) * A005327(n+1).
Extensions
More terms from Vladeta Jovovic, Mar 17 2000
Entry revised by N. J. A. Sloane, Aug 10 2011
a(0)=1 prepended by Alois P. Heinz, Jan 10 2025
Comments