cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002820 Number of n X n invertible binary matrices A such that A+I is invertible.

Original entry on oeis.org

1, 0, 2, 48, 5824, 2887680, 5821595648, 47317927329792, 1544457148312846336, 202039706313624586813440, 105823549214125066767168438272, 221819704567105547916502447159246848, 1860304261534304703934696550224148083769344, 62413833036707798343389591015829588620560344023040
Offset: 0

Views

Author

Keywords

Comments

Also number of linear orthomorphisms of GF(2)^n.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002884.
Column k=0 of A346201 and of A346381.

Programs

  • Maple
    # (Maple program based on Dai et al. from N. J. A. Sloane, Aug 10 2011)
    N:=proc(n,i) option remember; if i = 1 then 1 else (2^n-2^(i-1))*N(n,i-1); fi; end;
    Oh:=proc(n) option remember; local r; global N;
    if n=0 then RETURN(1) elif n=1 then RETURN(0) else
    add( 2^(r-2)*N(n,r)*2^(r*(n-r))*Oh(n-r), r=2..n); fi; end;
    [seq(Oh(n),n=0..15)];
  • Mathematica
    ni[n_, i_] := ni[n, i] = If[i == 1, 1, (2^n - 2^(i-1))*ni[n, i-1]]; a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[ 2^(r-2)*ni[n, r]*2^(r*(n-r))*a[n-r], {r, 2, n}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 19 2012, after Maple *)

Formula

Reference gives a recurrence.
a(n) = 2^(n(n-1)/2) * A005327(n+1).

Extensions

More terms from Vladeta Jovovic, Mar 17 2000
Entry revised by N. J. A. Sloane, Aug 10 2011
a(0)=1 prepended by Alois P. Heinz, Jan 10 2025