cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002821 a(n) = nearest integer to n^(3/2).

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 15, 19, 23, 27, 32, 36, 42, 47, 52, 58, 64, 70, 76, 83, 89, 96, 103, 110, 118, 125, 133, 140, 148, 156, 164, 173, 181, 190, 198, 207, 216, 225, 234, 244, 253, 263, 272, 282, 292, 302, 312, 322, 333, 343, 354, 364, 375, 386, 397
Offset: 0

Views

Author

Keywords

References

  • M. Boll, Tables Numériques Universelles. Dunod, Paris, 1947, p. 46.
  • M. Hall, Jr., The Diophantine equation x^3-y^2=k, pp. 173-198 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • A. V. Lebedev and R. M. Fedorova, A Guide to Mathematical Tables. Pergamon, Oxford, 1960, p. 17.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002821 = round . sqrt . fromIntegral . (^ 3)
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Maple
    A002821 := proc(n)
        round(n^(3/2)) ;
    end proc:
    seq(A002821(n),n=0..100) ;
  • Mathematica
    t[n_]:=Module[{flt=Floor[n],cet=Ceiling[n]},If[n-fltHarvey P. Dale, May 12 2011 *)
  • Python
    from math import isqrt
    def A002821(n): return (m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1) # Chai Wah Wu, Jul 30 2022

Formula

a(n) = floor(n^(3/2) + 1/2). - Ridouane Oudra, Nov 13 2019
a(n) = sqrt(A077118(n)). - Chai Wah Wu, Jul 30 2022