cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002824 Number of precomplete Post functions.

Original entry on oeis.org

1, 3, 18, 190, 3285, 88851, 3640644, 220674924, 19427552055, 2448107338105, 436330306419678, 108909970814260122, 37752710546082668409, 18044326480066641231855, 11818118910855384843861960, 10549135258779933616014791704, 12772521057179994145518171256587
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

Crossrefs

Cf. A001035.

Programs

  • Mathematica
    A001035 = DeleteCases[Import["https://oeis.org/A001035/b001035.txt", "Table"], b_ /; ! MatchQ[b, {_Integer, _Integer}] ][[All, 2]];
    a[n_] := Binomial[n, 2] * A001035[[n - 1]];
    Table[a[n], {n, 2, Length[A001035] + 1}] (* Jean-François Alcover, May 11 2019 *)

Formula

a(n) = binomial(n, 2) * A001035(n - 2). - Sean A. Irvine, Aug 24 2014

Extensions

More terms from Alois P. Heinz, Jun 02 2017