Original entry on oeis.org
1, 3, 18, 190, 3375, 93681
Offset: 2
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
A001035
Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs).
Original entry on oeis.org
1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023
Offset: 0
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are:
{} {}{1} {}{1}{12} {}{1}{12}{123}
{}{2}{12} {}{1}{13}{123}
{}{1}{2}{12} {}{2}{12}{123}
{}{2}{23}{123}
{}{3}{13}{123}
{}{3}{23}{123}
{}{1}{2}{12}{123}
{}{1}{3}{13}{123}
{}{2}{3}{23}{123}
{}{1}{12}{13}{123}
{}{2}{12}{23}{123}
{}{3}{13}{23}{123}
{}{1}{2}{12}{13}{123}
{}{1}{2}{12}{23}{123}
{}{1}{3}{12}{13}{123}
{}{1}{3}{13}{23}{123}
{}{2}{3}{12}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
(End)
- G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 427.
- K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K. H. Butler and G. Markowsky. "The number of partially ordered sets. I." Journal of Korean Mathematical Society 11.1 (1974).
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, PhD dissertation, Westfälische Wilhelms-Universität zu Münster, 1972.
- M. Erné and K. Stege, The number of labeled orders on fifteen elements, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.
- Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
- Juliana Bowles and Marco B. Caminati, A Verified Algorithm Enumerating Event Structures, arXiv:1705.07228 [cs.LO], 2017.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179.
- J. I. Brown and S. Watson, The number of complements of a topology on n points is at least 2^n (except for some special cases), Discr. Math., 154 (1996), 27-39.
- K. K.-H. Butler, The number of partially ordered sets, Journal of Combinatorial Theory, Series B 13.3 (1972): 276-289.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- K. K.-H. Butler and G. Markowsky, The number of partially ordered sets. II., J. Korean Math. Soc 11 (1974): 7-17.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966. [Annotated scanned copy]
- Narendrakumar R. Dasre and Pritam Gujarathi, Approximating the Bounds for Number of Partially Ordered Sets with n Labeled Elements, Computing in Engineering and Technology, Advances in Intelligent Systems and Computing, Vol. 1025, Springer (Singapore 2019), 349-356.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, The number of partially ordered (labeled) sets, Preprint, 1989. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313. [Annotated scanned copy]
- S. R. Finch, Transitive relations, topologies and partial orders.
- S. R. Finch, Transitive relations, topologies and partialorders, June 5, 2003. [Cached copy, with permission of the author]
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Didier Garcia, Proof of a(19) formula [in French].
- Didier Garcia, Two conjectures concerning a(n) [in French].
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- G. Grekos, Letter to N. J. A. Sloane, Oct 31 1994, with attachments.
- J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
- Richard Kenyon, Maxim Kontsevich, Oleg Ogievetsky, Cosmin Pohoata, Will Sawin, and Senya Shlosman, The miracle of integer eigenvalues, arXiv:2401.05291 [math.CO], 2024. See p. 4.
- Dongseok Kim, Young Soo Kwon, and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550 [math.CO], 2012. - From _N. J. A. Sloane_, Nov 09 2012
- M. Y. Kizmaz, On The Number Of Topologies On A Finite Set, arXiv preprint arXiv:1503.08359 [math.NT], 2015.
- D. J. Kleitman and B. L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc., 205 (1975) 205-220.
- G. Kreweras, Dénombrement des ordres étagés, Discrete Math., 53 (1985), 147-149.
- Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers.
- Sami Lazaar, Houssem Sabri, and Randa Tahri, Structural and Numerical Studies of Some Topological Properties for Alexandroff Spaces, Bull. Iran. Math. Soc. (2021).
- N. Lygeros and P. Zimmermann, Computation of P(14), the number of posets with 14 elements: 1.338.193.159.771.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Bob Proctor, Chapel Hill Poset Atlas.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971.
- D. Rusin, Further information and references. [Broken link]
- D. Rusin, Further information and references. [Cached copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972.
- N. J. A. Sloane, Classic Sequences.
- Gus Wiseman, Hasse diagrams of the a(4) = 219 posets.
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970. [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences.
- Index entries for sequences related to posets
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
a(15)-a(16) from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A008827
Number of proper partitions of a set of n labeled elements.
Original entry on oeis.org
0, 3, 13, 50, 201, 875, 4138, 21145, 115973, 678568, 4213595, 27644435, 190899320, 1382958543, 10480142145, 82864869802, 682076806157, 5832742205055, 51724158235370, 474869816156749, 4506715738447321, 44152005855084344, 445958869294805287, 4638590332229999351
Offset: 2
For n = 3 there are a(3) = 3 proper partitions of {1,2,3}, which can be represented {12|3}, {13|2}, {23|1}.
For n = 4 there are a(4) = 13 proper partitions of {1,2,3,4}, which can be represented {123|4}, {124|3}, {134|2}, {234|1}, {12|34}, {13|24}, {14|23}, {12|3|4}, {13|2|4}, {14|2|3}, {23|1|4}, {24|1|3}, {34|1|2}.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
-
List([3..30], n-> Bell(n)-2); # G. C. Greubel, Sep 13 2019
-
[Bell(n) -2: n in [3..30]]; // G. C. Greubel, Sep 13 2019
-
seq(combinat[bell](n)-2, n=2..31); # Zerinvary Lajos, Sep 29 2006
-
Table[BellB[n] - 2, {n, 3, 30}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
-
a(n)=sum(j=2,n--,(j+1)*stirling(n,j,2)) \\ Charles R Greathouse IV, Jul 06 2011
-
[bell_number(n)-2 for n in (3..30)] # G. C. Greubel, Sep 13 2019
A002826
Number of precomplete Post functions of n variables.
Original entry on oeis.org
1, 5, 18, 82, 643, 15182, 7848984, 549761932909, 10626621620680478174719, 1701411834605079120446041612364090304458, 79607061350691085453966118726400345961810854094316840855510985236799831016092
Offset: 1
- S. V. Jablonskii, Some results in the theory of functional systems (Russian), in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 963-971, Acad. Sci. Fennica, Helsinki, 1980.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
A002825
Number of precomplete Post functions.
Original entry on oeis.org
1, 2, 9, 40, 355, 11490, 7758205, 549758283980, 10626621620680257450759, 1701411834605079120446041612344662275078, 79607061350691085453966118726400345961810854094316840855510985234351715774913
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- Alois P. Heinz, Table of n, a(n) for n = 1..14
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
- Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
-
a[1] = 1; a[n_] := -n-2+(-1)^(n-1) Sum[(-1)^k Binomial[n, k] Sum[2^Binomial[ k, j], {j, 0, k}], {k, 0, n-1}];
Array[a, 11] (* Jean-François Alcover, Aug 19 2018 *)
-
a(n) = if (n==1, 1, -n - 2 + (-1)^(n-1) * sum(k=0, n-1, (-1)^k * binomial(n, k) * sum(j=0, k, (2^binomial(k, j))))); \\ Michel Marcus, Aug 25 2014
A246069
Number of maximal classes determined by permutations.
Original entry on oeis.org
0, 1, 1, 3, 6, 35, 120, 105, 1120, 19089, 362880, 133595, 39916800, 148397535, 458313856, 2027025, 1307674368000, 6133352225, 355687428096000, 40549021532019, 4139906028544000, 464463124401214575, 51090942171709440000, 1173011341727225
Offset: 1
-
a:= n -> add(n!/((n/p)! * p^(n/p) * (p-1)), p = numtheory:-factorset(n)):
seq(a(n), n=1..100); # Robert Israel, Aug 27 2014
-
a[n_] := If[n == 1, 0, Sum[n!/((n/p)! p^(n/p) (p-1)), {p, FactorInteger[n][[All, 1]]}]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
A246417
Homomorphic inverse images of elementary h-ary relations.
Original entry on oeis.org
0, 0, 1, 7, 36, 171, 813, 4012, 25931, 342263, 6498746, 116477549, 1839530421, 26071946330, 339710531761, 4165394873379, 50578180795388, 717354862704287, 15348610400624113, 466529833772501084, 15332096138370552335
Offset: 1
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
A259337
Classes of self-dual precomplete Post functions.
Original entry on oeis.org
1, 1, 1, 24, 11, 720
Offset: 2
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
A259338
Classes of type U precomplete Post functions.
Original entry on oeis.org
0, 3, 13, 50, 190, 917
Offset: 2
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
Original entry on oeis.org
1, 2, 9, 40, 355, 11490, 7758233, 549758283756
Offset: 1
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
Showing 1-10 of 11 results.
Comments