cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A259336 Erroneous version of A002824.

Original entry on oeis.org

1, 3, 18, 190, 3375, 93681
Offset: 2

Views

Author

N. J. A. Sloane, Jun 02 2017

Keywords

References

  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

A001035 Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs).

Original entry on oeis.org

1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 22 2015: (Start)
a(p^k) == 1 (mod p) and a(n + p) == a(n + 1) (mod p) for all primes p.
a(0+19) == a(0+1) (mod 19) or a(19^1) == 1 (mod 19), that is, a(19) mod 19 = 1.
a(2+17) == a(2+1) (mod 17). So a(19) == 19 (mod 17), that is, a(19) mod 17 = 2.
a(6+13) == a(6+1) (mod 13). So a(19) == 6129859 (mod 13), that is, a(19) mod 13 = 8.
a(8+11) == a(8+1) (mod 11). So a(19) == 44511042511 (mod 11), that is, a(19) mod 11 = 1.
a(12+7) == a(12+1) (mod 7). So a(19) == 171850728381587059351 (mod 7), that is, a(19) mod 7 = 1.
a(14+5) == a(14+1) (mod 5). So a(19) == 77567171020440688353049939 (mod 5), that is, a(19) mod 5 = 4.
a(16+3) == a(16+1) (mod 3). So a(19) == 122152541250295322862941281269151 (mod 3), that is, a(19) mod 3 = 1.
a(17+2) == a(17+1) (mod 2). So a(19) mod 2 = 1.
In conclusion, a(19) is a number of the form 2*3*5*7*11*13*17*19*n - 1615151, that is, 9699690*n - 1615151.
Additionally, for n > 0, note that the last digit of a(n) has the simple periodic pattern: 1,3,9,9,1,3,9,9,1,3,9,9,...
(End)
Number of rank n sublattices of the Boolean algebra B_n. - Kevin Long, Nov 20 2018
a(n) is the number of n X n idempotent Boolean relation matrices (A121337) that have rank n. - Geoffrey Critzer, Aug 16 2023
a(19) == 163279579 (mod 232792560). - Didier Garcia, Feb 06 2025

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are:
  {}  {}{1}  {}{1}{12}     {}{1}{12}{123}
             {}{2}{12}     {}{1}{13}{123}
             {}{1}{2}{12}  {}{2}{12}{123}
                           {}{2}{23}{123}
                           {}{3}{13}{123}
                           {}{3}{23}{123}
                           {}{1}{2}{12}{123}
                           {}{1}{3}{13}{123}
                           {}{2}{3}{23}{123}
                           {}{1}{12}{13}{123}
                           {}{2}{12}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{1}{2}{12}{13}{123}
                           {}{1}{2}{12}{23}{123}
                           {}{1}{3}{12}{13}{123}
                           {}{1}{3}{13}{23}{123}
                           {}{2}{3}{12}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 427.
  • K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • K. K. H. Butler and G. Markowsky. "The number of partially ordered sets. I." Journal of Korean Mathematical Society 11.1 (1974).
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
  • M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, PhD dissertation, Westfälische Wilhelms-Universität zu Münster, 1972.
  • M. Erné and K. Stege, The number of labeled orders on fifteen elements, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.

Crossrefs

Cf. A000798 (labeled topologies), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)

Formula

A000798(n) = Sum_{k=0..n} Stirling2(n,k)*a(k).
Related to A000112 by Erné's formulas: a(n+1) = -s(n, 1), a(n+2) = n*a(n+1) + s(n, 2), a(n+3) = binomial(n+4, 2)*a(n+2) - s(n, 3), where s(n, k) = sum(binomial(n+k-1-m, k-1)*binomial(n+k, m)*sum((m!)/(number of automorphisms of P)*(-(number of antichains of P))^k, P an unlabeled poset with m elements), m=0..n).
From Altug Alkan, Dec 22 2015: (Start)
a(p^k) == 1 (mod p) for all primes p and for all nonnegative integers k.
a(n + p) == a(n + 1) (mod p) for all primes p and for all nonnegative integers n.
If n = 1, then a(1 + p) == a(2) (mod p), that is, a(p + 1) == 3 (mod p).
If n = p, then a(p + p) == a(p + 1) (mod p), that is, a(2*p) == a(p + 1) (mod p).
In conclusion, a(2*p) == 3 (mod p) for all primes p.
(End)
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000798(k). - Tian Vlasic, Feb 25 2022

Extensions

a(15)-a(16) from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

A008827 Number of proper partitions of a set of n labeled elements.

Original entry on oeis.org

0, 3, 13, 50, 201, 875, 4138, 21145, 115973, 678568, 4213595, 27644435, 190899320, 1382958543, 10480142145, 82864869802, 682076806157, 5832742205055, 51724158235370, 474869816156749, 4506715738447321, 44152005855084344, 445958869294805287, 4638590332229999351
Offset: 2

Views

Author

Keywords

Comments

Previous name: Coefficients from fractional iteration of exp(x) - 1.
From Harry Richman, Mar 18 2023: (Start)
A "proper partition" of a set is a set partition in which there is more than one part, and there is some part which has more than one element.
a(n) is the number of chains of length 2 from the top element to the bottom element in the partition lattice on n labeled objects.
(End)

Examples

			For n = 3 there are a(3) = 3 proper partitions of {1,2,3}, which can be represented {12|3}, {13|2}, {23|1}.
For n = 4 there are a(4) = 13 proper partitions of {1,2,3,4}, which can be represented {123|4}, {124|3}, {134|2}, {234|1}, {12|34}, {13|24}, {14|23}, {12|3|4}, {13|2|4}, {14|2|3}, {23|1|4}, {24|1|3}, {34|1|2}.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.

Crossrefs

Programs

Formula

a(n) = A000110(n) - 2.

Extensions

More terms from Vladeta Jovovic, Jan 02 2004
Name changed and a(2)=0 prepended by Harry Richman, Mar 18 2023

A002826 Number of precomplete Post functions of n variables.

Original entry on oeis.org

1, 5, 18, 82, 643, 15182, 7848984, 549761932909, 10626621620680478174719, 1701411834605079120446041612364090304458, 79607061350691085453966118726400345961810854094316840855510985236799831016092
Offset: 1

Views

Author

Keywords

References

  • S. V. Jablonskii, Some results in the theory of functional systems (Russian), in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 963-971, Acad. Sci. Fennica, Helsinki, 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

Crossrefs

Formula

a(n) = A002824(n) + A246069(n) + A246137(n) + A008827(n) + A002825(n) + A246417(n). - Sean A. Irvine, Aug 25 2014

Extensions

More terms from Sean A. Irvine, Aug 25 2014

A002825 Number of precomplete Post functions.

Original entry on oeis.org

1, 2, 9, 40, 355, 11490, 7758205, 549758283980, 10626621620680257450759, 1701411834605079120446041612344662275078, 79607061350691085453966118726400345961810854094316840855510985234351715774913
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -n-2+(-1)^(n-1) Sum[(-1)^k Binomial[n, k] Sum[2^Binomial[ k, j], {j, 0, k}], {k, 0, n-1}];
    Array[a, 11] (* Jean-François Alcover, Aug 19 2018 *)
  • PARI
    a(n) = if (n==1, 1, -n - 2 + (-1)^(n-1) * sum(k=0, n-1, (-1)^k * binomial(n, k) * sum(j=0, k, (2^binomial(k, j))))); \\ Michel Marcus, Aug 25 2014

Formula

a(1) = 1. a(n) = -n - 2 + (-1)^(n-1) * Sum_{k=0..n-1} ((-1)^k * binomial(n, k) * Sum_{j=0..k} 2^binomial(k, j)), n > 1. - Sean A. Irvine, Aug 24 2014

Extensions

More terms from Sean A. Irvine, Aug 24 2014

A246069 Number of maximal classes determined by permutations.

Original entry on oeis.org

0, 1, 1, 3, 6, 35, 120, 105, 1120, 19089, 362880, 133595, 39916800, 148397535, 458313856, 2027025, 1307674368000, 6133352225, 355687428096000, 40549021532019, 4139906028544000, 464463124401214575, 51090942171709440000, 1173011341727225
Offset: 1

Views

Author

Sean A. Irvine, Aug 25 2014

Keywords

Comments

Corresponds to r_2(k) in the Rosenberg paper.

Crossrefs

Cf. A002826.

Programs

  • Maple
    a:= n -> add(n!/((n/p)! * p^(n/p) * (p-1)), p = numtheory:-factorset(n)):
    seq(a(n), n=1..100); # Robert Israel, Aug 27 2014
  • Mathematica
    a[n_] := If[n == 1, 0, Sum[n!/((n/p)! p^(n/p) (p-1)), {p, FactorInteger[n][[All, 1]]}]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)

Formula

a(n) = sum(n! / (m! * p^m * (p-1)), n = p * m, p prime). (corrected by Robert Israel, Aug 27 2014)

A246417 Homomorphic inverse images of elementary h-ary relations.

Original entry on oeis.org

0, 0, 1, 7, 36, 171, 813, 4012, 25931, 342263, 6498746, 116477549, 1839530421, 26071946330, 339710531761, 4165394873379, 50578180795388, 717354862704287, 15348610400624113, 466529833772501084, 15332096138370552335
Offset: 1

Views

Author

Sean A. Irvine, Aug 25 2014

Keywords

Comments

Corresponds to r_6(k) in the Rosenberg paper.

References

  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

Crossrefs

Cf. A002826.

Formula

a(n) = Sum_{h^m <= k, h >= 3, m >= 1} (((-1)^h / (m! * (h!)^m)) * Sum_{L=1..h^m} (-1)^L * binomial(h^m, L) * L^n). - Sean A. Irvine, Aug 25 2014

A259337 Classes of self-dual precomplete Post functions.

Original entry on oeis.org

1, 1, 1, 24, 11, 720
Offset: 2

Views

Author

N. J. A. Sloane, Jun 25 2015

Keywords

References

  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

A259338 Classes of type U precomplete Post functions.

Original entry on oeis.org

0, 3, 13, 50, 190, 917
Offset: 2

Views

Author

N. J. A. Sloane, Jun 25 2015

Keywords

References

  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

A259339 Erroneous version of A002825.

Original entry on oeis.org

1, 2, 9, 40, 355, 11490, 7758233, 549758283756
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2017

Keywords

References

  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
Showing 1-10 of 11 results. Next