A002846 Number of ways of transforming a set of n indistinguishable objects into n singletons via a sequence of n-1 refinements.
1, 1, 1, 2, 4, 11, 33, 116, 435, 1832, 8167, 39700, 201785, 1099449, 6237505, 37406458, 232176847, 1513796040, 10162373172, 71158660160, 511957012509, 3819416719742, 29195604706757, 230713267586731, 1861978821637735, 15484368121967620, 131388840051760458
Offset: 1
Examples
a(5) = 4 because there are 4 paths from top to bottom in this lattice: . ooooo / \ o.oooo oo.ooo | X | o.o.ooo o.oo.oo \ / o.o.o.oo | o.o.o.o.o . (This is the ranked poset L(5), but drawn vertically rather than horizontally.)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
- R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission]
- Olivier Gérard, The ranked posets L(2),...,L(8)
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9, Version 1, [Cached copy, with permission]
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9, Version 2, [Cached copy, with permission]
Programs
-
Maple
v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort(subsop( i=[j, l[i]-j][], l))), j=1..l[i]/2), [][]), i=1..nops(l))]: b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end: a:= n-> b([n]): seq(a(n), n=1..30); # Alois P. Heinz, Sep 22 2019
-
Mathematica
<
Mitch Harris, Jan 19 2006 *) -
Sage
def A002846(n): return Posets.IntegerPartitions(n).chain_polynomial().leading_coefficient() # Max Alekseyev, Dec 23 2015
Extensions
a(17)-a(25) from Mitch Harris, Jan 19 2006
Comments