A002868 Largest number in n-th row of triangle of Lah numbers (A008297 and A271703).
1, 1, 2, 6, 36, 240, 1800, 15120, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
Programs
-
Haskell
a002868 n = if n == 0 then 1 else maximum $ map abs $ a008297_row n -- Reinhard Zumkeller, Sep 30 2014
-
Maple
with(combinat): for n from 0 to 35 do big := 1: for m from 1 to n do if big < n!*binomial(n-1,m-1)/m! then big := n!*binomial(n-1,m-1)/m! fi: od: printf(`%d,`,big): od:
-
Mathematica
a[n_] := ( big = 1; For[ m = 1 , m <= n, m++, b = n!*Binomial[n - 1, m - 1]/m!; If[ big < b , big = b ]]; big); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 21 2012, after Maple *)
Formula
For 2 <= n <= 7, equals (n+1)!*n/2. - Alexander R. Povolotsky, Oct 16 2006
Extensions
More terms from James Sellers, Jan 03 2001