A002873 The maximal number of partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles, and which have the same number of nonempty parts.
1, 1, 3, 10, 53, 265, 1700, 13097, 96796, 829080, 8009815, 75604892, 808861988, 9175286549, 106167118057, 1320388106466, 16950041305210, 233232366601078, 3243603207488124, 47776065074368313, 733990397879859192, 11515503147927664816, 189107783918416912912
Offset: 0
Examples
There are three partitions of {1,2,3,4} into two (nonempty) parts, and which are invariant under the permutation (1,2)(3,4), namely {{1,2}, {3,4}}, {{1,3}, {2,4}}, and {{1,4}, {2,3}}. There are also one such partition with just one part, two with three parts, and one with four parts; but three is the largest of these amounts. Thus, a(2) = 3. Similarly, there are ten (1,2)(3,4)(5,6) invariant partitions of {1,2,3,4,5,6} into three nonempty parts, and no larger amount into any other given number of parts, whence a(3) = 10.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..514
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- Index entries for sequences related to sorting
Extensions
Name changed and example added by Jörgen Backelin, Jan 13 2016
a(7)-a(8) from Sean A. Irvine, Jun 19 2016
a(9)-a(22) from Andrew Howroyd, Oct 01 2017
Comments