cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002889 Arrays of dumbbells.

Original entry on oeis.org

1, 10, 56, 234, 815, 2504, 7018, 18336, 45328, 107160, 244198, 539656, 1161987, 2446906, 5054440, 10266850, 20549117, 40595568, 79271188, 153190480, 293278496, 556737696, 1048772300, 1961855408, 3646420325, 6737649754
Offset: 1

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
  • R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
  • R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002889 n = a002889_list !! (n-1)
    a002889_list = 1 : 10 : 56 : zipWith (+)
       (zipWith (-) (map (* 2) $ drop 2 a002889_list) a002889_list)
       (drop 2 $ zipWith (+) (tail a002941_list) a002941_list)
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^3/((1-x)^3*(1-x-x^2)^4) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[(1+x)^3/((1-x)^3*(1-x-x^2)^4) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
    LinearRecurrence[{7,-17,11,19,-29,-3,21,-3,-7,1,1},{1,10,56,234,815,2504,7018,18336,45328,107160,244198},30] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+x)^3/((1-x)^3*(1-x-x^2)^4)) \\ Altug Alkan, Jul 31 2018
    
  • Sage
    ((1+x)^3/((1-x)^3*(1-x-x^2)^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2*a(n-1) - a(n-3) + A002941(n) + A002941(n-1).
G.f.: (1+x)^3/((1-x)^3*(1-x-x^2)^4).

Extensions

More terms from Henry Bottomley, Jun 02 2000