cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A271432 Number of n-step excursions on the 4-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 24, 192, 3384, 51840, 911040, 16369920, 307009080, 5902176000, 116083727424, 2323941903360, 47232891389376, 972252599205888, 20233078205573376, 425067670281526272, 9004456318854367800, 192148701659269774848
Offset: 0

Views

Author

Christoph Koutschan, Apr 07 2016

Keywords

Comments

a(n) = number of walks in Z^4 starting and ending at the origin, using only the steps (a,b,0,0), (a,0,b,0), ..., (0,0,a,b), where a,b can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(4,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), this sequence (d = 4), A271650 (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 4 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    a[0] = 1; a[1] = 0; a[2] = 24; a[3] = 192; a[4] = 3384; a[n_] := a[n] = (27648*(-4 + n)*(-3 + n)^2*(-2 + n)*(-8 + 35*n^2)*a[-5 + n] + 6912*(-3 + n)*(-2 + n)*(-132 + 62*n + 676*n^2 - 525*n^3 + 105*n^4)*a[-4 + n] + 144*(-2 + n)*(1440 - 352*n - 11430*n^2 + 15435*n^3 - 7350*n^4 + 1225*n^5)*a[-3 + n] + 8*(72 - 3738*n + 17065*n^2 - 29745*n^3 + 25150*n^4 - 10500*n^5 + 1750*n^6)*a[-2 + n] - (-1 + n)*(144 - 540*n + 487*n^2 + 151*n^3 - 315*n^4 + 105*n^5)*a[-1 + n])/(n^4*(27 - 70*n + 35*n^2)); Array[a, 30, 0]
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 4, Floor[(nmax - n)/2], 0]}], {d1, 3, 4}]; First /@ T

Formula

a(n) satisfies the fifth-order linear recurrence equation (35*n^2-70*n+27)*n^4*a(n) +(n-1)*(105*n^5-315*n^4+151*n^3 +487*n^2 -540*n+144)*a(n-1) -8*(1750*n^6-10500*n^5+25150*n^4 -29745*n^3 +17065*n^2-3738*n+72)*a(n-2) -144*(n-2) *(1225*n^5-7350*n^4 +15435*n^3 -11430*n^2-352*n+1440)*a(n-3)-6912*(n-3)*(n-2)*(105*n^4 -525*n^3+676*n^2 +62*n-132)*a(n-4)-27648*(n-4)*(n-3)^2*(n-2)*(35*n^2-8) *a(n-5) = 0.
The generating function P(z) = Sum_{n>=0} a(n)*(z/24)^n is given by the 4-fold integral (1/Pi)^4 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_4) dk_1 ... dk_4, where the structure function is defined as lambda_4 = (1/binomial(4,2)) Sum_{i=1..4} Sum_{j=(i+1)..4} cos(k_i)*cos(k_j). The function P(z) satisfies the fourth-order linear ODE 12*z*(256+632*z+702*z^2+382*z^3+98*z^4+9*z^5)*P(z)+12*(-384+224*z+3716*z^2+7633*z^3 +6734*z^4+2939*z^5+604*z^6+45*z^7) *P'(z)+6*z*(-5376-5248*z+11080*z^2 +25286*z^3 +19898*z^4+7432*z^5 +1286*z^6+81*z^7) *P''(z)+2*z^2*(4+3*z)*(-3456-2304*z+3676*z^2+4920 *z^3+2079*z^4+356*z^5 +21*z^6)*P'''(z)+(-1+z)*z^3*(2+z)*(3+z)*(6+z)*(8+z)*(4+3*z)^2*P''''(z) = 0.
a(n) ~ 2^(3*n+1) * 3^n / (Pi^2 * n^2). - Vaclav Kotesovec, Apr 08 2016

A271650 Number of n-step excursions on the 5-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 40, 480, 11880, 281280, 7506400, 210268800, 6166993000, 187069411200, 5833030976640, 186014056166400, 6044435339896800, 199561060892793600, 6679216425794140800, 226213441773789550080, 7741313040820500484200
Offset: 0

Views

Author

Christoph Koutschan, Apr 11 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^5 starting and ending at the origin, using only the steps of the form (s_1, ..., s_5) with s_1^2 + ... + s_5^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(5,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), this sequence (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 5 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 5, Floor[(nmax - n)/2], 0]}], {d1, 3, 5}]; First /@ T

Formula

a(n) satisfies a seventh-order linear recurrence equation with polynomial coefficients of degree 12 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/40)^n is given by the 5-fold integral (1/Pi)^5 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_5) dk_1 ... dk_5, where the structure function is defined as lambda_5 = (1/binomial(5,2)) Sum_{i=1..5} Sum_{j=(i+1)..5} cos(k_i)*cos(k_j). The function P(z) satisfies a sixth-order linear ODE with polynomial coefficients of degree 17 (see link above).

A271651 Number of n-step excursions on the 6-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 60, 960, 30780, 996480, 36560400, 1430553600, 59089923900, 2543035488000, 113129280527760, 5170796720812800, 241741903350301200, 11520044551208793600, 558061378022616811200, 27421336248833005839360
Offset: 0

Views

Author

Christoph Koutschan, Apr 11 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^6 starting and ending at the origin, using only the steps of the form (s_1, ..., s_6) with s_1^2 + ... + s_6^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(6,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), this sequence (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 6 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 6, Floor[(nmax - n)/2], 0]}], {d1, 3, 6}]; First /@ T

Formula

a(n) satisfies a twelfth-order linear recurrence equation with polynomial coefficients of degree 33 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/60)^n is given by the 6-fold integral (1/Pi)^6 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_6) dk_1 ... dk_6, where the structure function is defined as lambda_6 = (1/binomial(6,2)) Sum_{i=1..6} Sum_{j=(i+1)..6} cos(k_i)*cos(k_j). The function P(z) satisfies an eighth-order linear ODE with polynomial coefficients of degree 43 (see link above).

A271670 Number of n-step excursions on the 7-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 84, 1680, 66276, 2731680, 128704800, 6555265920, 355588928100, 20247799145280, 1198746727590384, 73266532153214400, 4598338364703822816, 295145004688715301120, 19311431876483926443264
Offset: 0

Views

Author

Christoph Koutschan, Apr 12 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^7 starting and ending at the origin, using only the steps of the form (s_1, ..., s_7) with s_1^2 + ... + s_7^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(7,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), this sequence (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 7 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 7, Floor[(nmax - n)/2], 0]}], {d1, 3, 7}]; First /@ T

Formula

a(n) conjecturally satisfies a linear recurrence equation of order 15 with polynomial coefficients of degree 56 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/84)^n is given by the 7-fold integral (1/Pi)^7 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_7) dk_1 ... dk_7, where the structure function is defined as lambda_7 = (1/binomial(7,2)) Sum_{i=1..7} Sum_{j=(i+1)..7} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies an eleventh-order linear ODE with polynomial coefficients of degree 68 (see link above).

A271671 Number of n-step excursions on the 8-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 112, 2688, 126000, 6316800, 364887040, 23038364160, 1562288430640, 112014905049600, 8399872737107712, 653454438359331840, 52412319029000899584, 4313870772211888183296, 362994066330649023029760
Offset: 0

Views

Author

Christoph Koutschan, Apr 12 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^8 starting and ending at the origin, using only the steps of the form (s_1, ..., s_8) with s_1^2 + ... + s_8^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(8,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), A271670 (d = 7), this sequence (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 8 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 8, Floor[(nmax - n)/2], 0]}], {d1, 3, 8}]; First /@ T

Formula

a(n) conjecturally satisfies a linear recurrence equation of order 20 with polynomial coefficients of degree 109 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/112)^n is given by the 8-fold integral (1/Pi)^8 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_8) dk_1 ... dk_8, where the structure function is defined as lambda_8 = (1/binomial(8,2)) Sum_{i=1..8} Sum_{j=(i+1)..8} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies a linear ODE of order 14 with polynomial coefficients of degree 126 (see link above).

A271672 Number of n-step excursions on the 9-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 144, 4032, 219024, 12942720, 887135040, 67057079040, 5484251057040, 477369708721920, 43704143706754944, 4170816570389736960, 412062922497680790336, 41920366214226928716288, 4372905161028532447478016
Offset: 0

Views

Author

Christoph Koutschan, Apr 12 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^9 starting and ending at the origin, using only the steps of the form (s_1, ..., s_9) with s_1^2 + ... + s_9^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(9,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), this sequence (d = 9), A271673 (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 9 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 9, Floor[(nmax - n)/2], 0]}], {d1, 3, 9}]; First /@ T

Formula

a(n) conjecturally satisfies a linear recurrence equation of order 22 with polynomial coefficients of degree 151 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/144)^n is given by the 9-fold integral (1/Pi)^9 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_9) dk_1 ... dk_9, where the structure function is defined as lambda_9 = (1/binomial(9,2)) Sum_{i=1..9} Sum_{j=(i+1)..9} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies a linear ODE of order 18 with polynomial coefficients of degree 169 (see link above).
Hence a(n) conjecturally satisfies a linear recurrence equation with polynomial coefficients.

A271673 Number of n-step excursions on the 10-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 180, 5760, 355860, 24226560, 1923670800, 169658496000, 16291413249300, 1674631754611200, 181989927592033680, 20709782925396364800, 2449425950787336166800, 299337868552812779289600, 37621311095831818078152000
Offset: 0

Views

Author

Christoph Koutschan, Apr 12 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^10 starting and ending at the origin, using only the steps of the form (s_1, ..., s_10) with s_1^2 + ... + s_10^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(10,2).
		

Crossrefs

Cf. A002895, A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), this sequence (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 10 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 10, Floor[(nmax - n)/2], 0]}], {d1, 3, 10}]; First /@ T

Formula

a(n) conjecturally satisfies a linear recurrence equation of order 30 with polynomial coefficients of degree 274 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/180)^n is given by the 10-fold integral (1/Pi)^10 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_10) dk_1 ... dk_10, where the structure function is defined as lambda_10 = (1/binomial(10,2)) Sum_{i=1..10} Sum_{j=(i+1)..10} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies a linear ODE of order 22 with polynomial coefficients of degree 300 (see link above).

A271674 Number of n-step excursions on the 11-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 220, 7920, 548460, 42276960, 3818372800, 385303564800, 42556023409900, 5056698223684800, 638162986199119920, 84683717201322993600, 11723112517163129913600, 1682392957299926013542400, 249030549709148521993536000, 37864267170542400351711467520
Offset: 0

Views

Author

Christoph Koutschan, Apr 12 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^11 starting and ending at the origin, using only the steps of the form (s_1, ..., s_11) with s_1^2 + ... + s_11^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(11,2).
		

Crossrefs

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), this sequence (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 11 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 11, Floor[(nmax - n)/2], 0]}], {d1, 3, 11}]; First /@ T

Formula

The probability generating function P(z) = Sum_{n>=0} a(n)*(z/220)^n is given by the 11-fold integral (1/Pi)^11 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_11) dk_1 ... dk_11, where the structure function is defined as lambda_11 = (1/binomial(11,2)) Sum_{i=1..11} Sum_{j=(i+1)..11} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies a linear ODE of order 27 with polynomial coefficients of degree 409 (see link above).
Hence a(n) conjecturally satisfies a linear recurrence equation with polynomial coefficients.

A288461 Chebyshev coefficients of density of states of FCC lattice.

Original entry on oeis.org

1, 0, -120, 192, 11232, -69120, -887808, 11870208, 34721280, -1458585600, 4612792320, 124992552960, -1294622392320, -3918630223872, 170411025235968, -1023380614545408, -11537631123996672, 248923798395420672, -709263007722504192, -30740965743050883072, 367936297318798589952, 1683415347595793399808
Offset: 0

Views

Author

Yen-Lee Loh, Jun 19 2017

Keywords

Comments

This is the sequence of integers z^n g_n for n=0,1,2,3,... where g_n are the coefficients in the Chebyshev polynomial expansion of the density of states of the face-centered cubic lattice (z=12), g(w) = 1 / (Pi*sqrt(1-w^2)) * Sum_{n>=0} (2-delta_n) g_n T_n(w). Here |w| <= 1 and delta is the Kronecker delta. The coordination number is z=6. Note that the triangular lattice is sometimes called the hexagonal lattice.
The Chebyshev coefficients, g_n, are related to the number of walks on the lattice that return to the origin, W_n, as g_n = Sum_{k=0..n} a_{nk} z^{-k} W_k, where z is the coordination number of the lattice and a_{nk} are the coefficients of Chebyshev polynomials such that T_n(x) = Sum_{k=0..n} a_{nk} x^k. The author was unable to obtain a closed form for z^n g_n.

Crossrefs

Related to numbers of walks returning to origin, W_n, on FCC lattice (A002899).

Programs

  • Mathematica
    Wdia[n_] := If[OddQ[n], 0,
       Sum[Binomial[n/2,j]^2 Binomial[2j,j] Binomial[n-2j, n/2-j], {j, 0, n/2}]];
    Wfcc[n_] := Sum[Binomial[n, j] (-4)^(n-j) Wdia[2 j], {j, 0, n}];
    ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}];
    zng[n_] := Sum[ank[n, k]*12^(n-k)*Wfcc[k], {k, 0, n}];
    Table[zng[n], {n,0,50}]

A328725 Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z + x*y + y*z + z*x + 1/(x*y) + 1/(y*z) + 1/(z*x) + x*y*z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 15, 115, 1255, 13671, 160461, 1936425, 24071895, 305313415, 3939158905, 51521082405, 681635916325, 9105864515125, 122657982366375, 1664151758259915, 22720725637684215, 311933068664333175, 4303704125389134825, 59640225721889127525, 829774531966386480705
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Crossrefs

Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^m: A002426 (m=2), A172634 (m=3), this sequence (m=4), A328750 (m=5).

Programs

  • PARI
    {a(n) = polcoef(polcoef(polcoef((-1+(1+x)*(1+y)*(1+z)+(1+1/x)*(1+1/y)*(1+1/z))^n, 0), 0), 0)}
    
  • PARI
    {a(n) = sum(i=0, n, (-1)^(n-i)*binomial(n,i)*sum(j=0, i, binomial(i, j)^4))}

Formula

a(n) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^4.
From Vaclav Kotesovec, Oct 28 2019: (Start)
Recurrence: n^3*a(n) = (2*n - 1)^3*a(n-1) + (n-1)*(94*n^2 - 188*n + 93)*a(n-2) + 80*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 75*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 15^(n + 3/2) / (2^(11/2) * Pi^(3/2) * n^(3/2)). (End)
Showing 1-10 of 15 results. Next