A002937 An exotic continued fraction (for the real root of x^3 - 8*x - 10).
3, 3, 7, 4, 2, 30, 1, 8, 3, 1, 1, 1, 9, 2, 2, 1, 3, 22986, 2, 1, 32, 8, 2, 1, 8, 55, 1, 5, 2, 28, 1, 5, 1, 1501790, 1, 2, 1, 7, 6, 1, 1, 5, 2, 1, 6, 2, 2, 1, 2, 1, 1, 3, 1, 3, 1, 2, 4, 3, 1, 35657
Offset: 0
Examples
3.318628217750185659109680153... = 3 + 1/(3 + 1/(7 + 1/(4 + 1/(2 + ...)))).
References
- R. P. Brent, A. J. van der Poorten, and H. J. Te Riele (1996, May), A comparative study of algorithms for computing continued fractions of algebraic numbers. In ANTS-II: International Algorithmic Number Theory Symposium (pp. 35-47), LNCS Vol. 1122, Springer, Berlin, Heidelberg. See Tables 3 and 4.
- A. Ya. Khinchin, Continued Fractions, Dover Publications, 1997.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 227.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. M. Stark, An explanation of some exotic continued fractions found by Brillhart, pp. 21-35 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Adam P. Goucher, Exotic continued fractions.
Crossrefs
Cf. A160332 (decimal expansion).
Programs
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=NULL; p=x^3 - 8*x - 10; rs=polroots(p); r=real(rs[1]); c=contfrac(r); for (n=1, 20001, write("b002937.txt", n-1, " ", c[n])); } \\ Harry J. Smith, May 11 2009
-
PARI
contfrac(polrootsreal(x^3 - 8*x - 10)[1]) \\ Charles R Greathouse IV, Apr 14 2014
Comments