cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A132138 Characteristic function of the set of numbers defined in A002977.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2007

Keywords

Comments

a(A002977(n)) = 1 and a(A132142(n)) = 0.

Formula

a(n) = if chi(n) then 1 else 0, where chi(n) = if n<3 then (n=1) else ((n mod 2 = 1) AND chi((n-1)/2)) OR ((n mod 3 = 1) AND chi((n-1)/3)).

A085249 Terms k of A002977 such that both (k-1)/2 and (k-1)/3 are also terms of A002977.

Original entry on oeis.org

31, 175, 1039, 1471, 2191, 4495, 6223, 8815, 13135, 20479, 22639, 26815, 30703, 36031, 37327, 45967, 52879, 53743, 54031, 66703, 78799, 89023, 108175, 122863, 125887, 132799, 135679, 136687, 160879, 177151, 178159, 181183, 184207, 188095
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2003

Keywords

Examples

			A002977(51) = 175: (175-1)/2 = 82 = A002977(28) and (175-1)/3 = 58 = A002977(22), therefore 175 is a term.
		

Crossrefs

Subsequence of A016921 and A002977.

Programs

  • Mathematica
    seq[max_] := Module[{s = Flatten[NestWhileList[Flatten[{2*# + 1, 3*# + 1}] &, 1, Min[#1] < max &]], t}, t = Union[Select[s, # <= max &]]; Select[t, MemberQ[t, (# - 1)/2] && MemberQ[t, (# - 1)/3] &]]; seq[200000] (* Amiram Eldar, May 07 2022 *)

Extensions

More terms from Ray Chandler, Sep 06 2003

A132142 Complement of A002977.

Original entry on oeis.org

2, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 23, 24, 25, 26, 29, 30, 32, 33, 34, 35, 36, 37, 38, 41, 42, 44, 47, 48, 49, 50, 51, 52, 53, 54, 56, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 86, 88, 89, 90, 92, 95, 96, 97, 98, 99, 100, 101, 102, 103
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2007

Keywords

Comments

A132138(a(n)) = 0.

A190858 Integers in (-1+A002977)/2; contains A002977 as a proper subsequence.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 13, 15, 19, 21, 22, 27, 28, 31, 33, 39, 40, 42, 43, 45, 46, 55, 57, 58, 60, 63, 64, 67, 69, 79, 81, 82, 85, 87, 91, 93, 94, 96, 111, 115, 117, 118, 121, 123, 127, 129, 130, 135, 136, 139, 141, 159, 163, 165, 166, 171, 172, 175, 177, 183, 187, 189, 190, 193, 195, 202, 204, 223, 231, 235, 237, 238, 243, 244, 247, 249
Offset: 1

Views

Author

Clark Kimberling, May 25 2011

Keywords

Comments

See A190803.

Crossrefs

Programs

  • Mathematica
    h = 2; i = 1; j = 3; k = 1; f = 1; g = 9 ;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A002977 *)
    b = (a - 1)/2; c = (a - 1)/3; r = Range[1, 300];
    d = Intersection[b, r] (* A190858 *)
    e = Intersection[c, r] (* A190859 *)

A058361 a(n) is the least k in A002977 with a gap of n. Also n + a(n) is the least k in A007448 which is repeated n times.

Original entry on oeis.org

3, 1, 4, 15, 22, 121, 735, 31, 46, 22143, 4468, 67, 31455, 391, 2308, 447, 94, 33151, 16383, 139, 202, 7551, 5224, 787, 1595391, 3685, 580, 30591, 418, 42495, 1791, 607, 1342, 3217407, 1095166, 283, 398847, 32767, 365311, 88575, 1174, 6925, 12304383
Offset: 1

Views

Author

Robert G. Wilson v, Dec 16 2000

Keywords

Crossrefs

Programs

  • Mathematica
    k = {1}; Do[ k = Union[ Join[ k, 2k + 1, 3k + 1 ] ]; l = Length[ k ]; i = 1; While[ i < l && k[ [ i ] ] < 10^9, i++ ]; k = Take[ k, {1, i} ], {n, 1, 30} ]; f[ n_Integer ] := (i = 1; While[ k[ [ i + 1 ] ] - k[ [ i ] ] != n, i++ ]; k[ [ i ] ]); Table[ f[ n ], {n, 1, 84} ]

A076291 a(n) = A002977(n+1) - A002977(n).

Original entry on oeis.org

2, 1, 3, 2, 1, 3, 2, 4, 2, 1, 5, 1, 3, 8, 1, 3, 2, 1, 9, 2, 1, 5, 1, 3, 12, 2, 1, 3, 2, 4, 2, 1, 17, 4, 2, 1, 3, 6, 2, 1, 5, 1, 3, 20, 4, 2, 1, 5, 1, 3, 8, 4, 2, 1, 3, 9, 21, 8, 4, 2, 1, 5, 1, 3, 8, 1, 3, 2, 1, 9, 2, 1, 5, 1, 3, 36, 8, 4, 2, 1, 9, 2, 1, 5, 1, 3, 9, 3, 8, 4, 2, 1, 5, 1, 3, 14, 1, 3, 9, 29, 16
Offset: 1

Views

Author

Benoit Cloitre, Nov 06 2002

Keywords

Crossrefs

Cf. A002977.

Programs

  • Mathematica
    seq[max_] := Module[{s = Flatten[NestWhileList[Flatten[{2*# + 1, 3*# + 1}] &, 1, Min[#1] < max &]]}, Differences[Union[Select[s, # <= max &]]]]; seq[400000] (* Amiram Eldar, May 07 2022 *)

A190859 Integers in (-1+A002977)/3; contains A002977 as a proper subsequence.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 18, 19, 21, 22, 26, 27, 28, 30, 31, 38, 39, 40, 42, 43, 45, 46, 54, 55, 57, 58, 62, 63, 64, 67, 74, 78, 79, 81, 82, 85, 86, 87, 90, 91, 93, 94, 106, 110, 111, 114, 115, 117, 118, 121, 122, 126, 127, 129, 130, 135, 136, 139, 154, 158, 159, 162, 163, 165, 166, 170, 171, 172, 174, 175, 182, 183, 186
Offset: 1

Views

Author

Clark Kimberling, May 25 2011

Keywords

Comments

See A190803.

Crossrefs

Programs

A073942 Numbers k such that A002977(k) - A002977(k-1) = 1.

Original entry on oeis.org

3, 6, 11, 13, 16, 19, 22, 24, 28, 33, 37, 41, 43, 48, 50, 55, 62, 64, 67, 70, 73, 75, 81, 84, 86, 93, 95, 98, 106, 109, 111, 115, 120, 124, 127, 129, 138, 142, 145, 147, 150, 158, 162, 164, 168, 170, 173, 182, 186, 189, 191, 196, 198, 203, 211, 215, 218, 220, 223
Offset: 1

Views

Author

Benoit Cloitre, Nov 20 2002

Keywords

Crossrefs

Cf. A002977.

Programs

  • Mathematica
    max = 1500; s = Union @ Flatten[NestWhileList[Flatten[{2*# + 1, 3*# + 1}] &, 1, Min[#1] < max &]]; 1 + Position[Differences[Select[s, # <= max &]], 1] // Flatten (* Amiram Eldar, May 07 2022 *)

Formula

Conjecture : a(n) is asymptotic to c*n where c is around 3.8...

A076827 Number of odd terms minus number of even terms in the set S(n) = ( A002977(k) : k<=n).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 17, 18, 19, 20, 21, 20, 21, 20, 21, 22, 23, 24, 23, 24, 23, 24, 25, 26, 27, 26, 27, 26, 27, 28, 27, 28, 29, 28, 29, 30, 29, 30, 29, 30, 31
Offset: 1

Views

Author

Benoit Cloitre, Nov 20 2002

Keywords

Examples

			S(12) = (1,3,4,7,9,10,13,15,19,21,22,27) and there are 9 odd terms and 3 even terms in S(12), hence a(12) = 9-3 = 6.
		

Crossrefs

Cf. A002977.

Programs

  • Mathematica
    seq[max_] := Module[{s = Flatten[NestWhileList[Flatten[{2*# + 1, 3*# + 1}] &, 1, Min[#1] < max &]], t}, t = Union[Select[s, # <= max &]]; FoldList[Plus, -(-1)^t]]; seq[300] (* Amiram Eldar, May 07 2022 *)

Formula

a(n) = (-1)*Sum_{k=1..n} (-1)^A002977(k).
a(n) > 0 and a(n) seems to be asymptotic to c*n where c = 0.4...

A190803 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x-1 and 3x-1 are in a.

Original entry on oeis.org

1, 2, 3, 5, 8, 9, 14, 15, 17, 23, 26, 27, 29, 33, 41, 44, 45, 50, 51, 53, 57, 65, 68, 77, 80, 81, 86, 87, 89, 98, 99, 101, 105, 113, 122, 129, 131, 134, 135, 149, 152, 153, 158, 159, 161, 170, 171, 173, 177, 194, 195, 197, 201, 203, 209, 225, 230, 239, 242
Offset: 1

Views

Author

Clark Kimberling, May 25 2011

Keywords

Comments

This sequence represents a class of sequences generated by rules of the form "a(1)=1, and if x is in a then hx+i and jx+k are in a, where h,i,j,k are integers." If m>1, at least one of the numbers b(m)=(a(m)-i)/h and c(m)=(a(m)-k)/j is in the set N of natural numbers. Let d(n) be the n-th b(m) in N, and let e(n) be the n-th c(m) in N. Note that a is a subsequence of both d and e.
Examples, where [A......] indicates a conjecture:
A190803: (h,i,j,k)=(2,-1,3,-1); d=A190841, e=A190842
A190804: (h,i,j,k)=(2,-1,3,0); d=[A190803], e=A190844
A190805: (h,i,j,k)=(2,-1,3,1); d=A190845, e=[A190808]
A190806: (h,i,j,k)=(2,-1,3,2); d=[A190804], e=A190848
...
A190807: (h,i,j,k)=(2,0,3,-1); d=A190849, e=A190850
A003586: (h,i,j,k)=(2,0,3,0); d=e=A003586
A190808: (h,i,j,k)=(2,0,3,1); d=A190851, e=A190852
A190809: (h,i,j,k)=(2,0,3,2); d=A190853, e=A190854
...
A190810: (h,i,j,k)=(2,1,3,-1); d=A190855, e=A190856
A190811: (h,i,j,k)=(2,1,3,0); d=A002977, e=A190857
A002977: (h,i,j,k)=(2,1,3,1); d=A190858, e=A190859
A190812: (h,i,j,k)=(2,1,3,2); d=A069353, e=[A190812]
...
For h=j=3, see A191106; for h=3 and j=4, see A191113.

Examples

			1 -> 2 -> 3,5 -> 8,9,14 -> 15,17,23,26,27,41 -> ...
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a190803 n = a190803_list !! (n-1)
    a190803_list = 1 : f (singleton 2)
       where f s = m : (f $ insert (2*m-1) $ insert (3*m-1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 2; i = -1; j = 3; k = -1; f = 1; g = 10;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A190803 *)
    b = (a + 1)/2; c = (a + 1)/3; r = Range[1, 300];
    d = Intersection[b, r] (* A190841 *)
    e = Intersection[c, r] (* A190842 *)
    (* Regarding this program - useful for many choices of h,i,j,k,f,g - the depth g must be chosen with care - that is, large enough.  Assuming that h<=j, the least new terms in successive nests a are typically iterates of hx+i, starting from x=1.  If, for example, h=2 and i=0, the least terms are 2,4,8,...,2^g, so that g>=9 ensures inclusion of all the desired terms <=256. *)

Extensions

a(34)=225 inserted by Reinhard Zumkeller, Jun 01 2011
Showing 1-10 of 21 results. Next