cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003022 Length of shortest (or optimal) Golomb ruler with n marks.

Original entry on oeis.org

1, 3, 6, 11, 17, 25, 34, 44, 55, 72, 85, 106, 127, 151, 177, 199, 216, 246, 283, 333, 356, 372, 425, 480, 492, 553, 585
Offset: 2

Views

Author

Keywords

Comments

a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of not necessarily distinct elements) of which are distinct.
From David W. Wilson, Aug 17 2007: (Start)
An n-mark Golomb ruler has a unique integer distance between any pair of marks and thus measures n(n-1)/2 distinct integer distances.
An optimal n-mark Golomb ruler has the smallest possible length (distance between the two end marks) for an n-mark ruler.
A perfect n-mark Golomb ruler has length exactly n(n-1)/2 and measures each distance from 1 to n(n-1)/2. (End)
Positions where A143824 increases (see also A227590). - N. J. A. Sloane, Apr 08 2016
From Gus Wiseman, May 17 2019: (Start)
Also the smallest m such that there exists a length-n composition of m for which every restriction to a subinterval has a different sum. Representatives of compositions for the first few terms are:
0: ()
1: (1)
3: (2,1)
6: (2,3,1)
11: (3,1,5,2)
17: (4,2,3,7,1)
Representatives of corresponding Golomb rulers are:
{0}
{0,1}
{0,2,3}
{0,2,5,6}
{0,3,4,9,11}
{0,4,6,9,16,17}
(End)

Examples

			a(5)=11 because 0-1-4-9-11 (0-2-7-10-11) resp. 0-3-4-9-11 (0-2-7-8-11) are shortest: there is no b0-b1-b2-b3-b4 with different distances |bi-bj| and max. |bi-bj| < 11.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.
  • A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff.
  • S. W. Golomb, How to number a graph, pp. 23-37 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • Richard K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag (1994), Section C10.
  • A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.
  • Miller, J. C. P., Difference bases. Three problems in additive number theory. Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 299--322. Academic Press, London,1971. MR0316269 (47 #4817)
  • Rhys Price Jones, Gracelessness, Proc. 10th S.-E. Conf. Combin., Graph Theory and Computing, 1979, pp. 547-552.
  • Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A106683 for triangle of marks.
0-1-4-9-11 corresponds to 1-3-5-2 in A039953: 0+1+3+5+2=11
A row or column of array in A234943.
Adding 1 to these terms gives A227590. Cf. A143824.
For first differences see A270813.

Programs

  • Mathematica
    Min@@Total/@#&/@GatherBy[Select[Join@@Permutations/@Join@@Table[IntegerPartitions[i],{i,0,15}],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&],Length] (* Gus Wiseman, May 17 2019 *)
  • Python
    from itertools import combinations, combinations_with_replacement, count
    def a(n):
        for k in count(n-1):
            for c in combinations(range(k), n-1):
                c = c + (k, )
                ss = set()
                for s in combinations_with_replacement(c, 2):
                    if sum(s) in ss: break
                    else: ss.add(sum(s))
                if len(ss) == n*(n+1)//2: return k # Jianing Song, Feb 14 2025, adapted from the python program of A345731

Formula

a(n) >= n(n-1)/2, with strict inequality for n >= 5 (Golomb). - David W. Wilson, Aug 18 2007

Extensions

425 sent by Ed Pegg Jr, Nov 15 2004
a(25), a(26) proved by OGR-25 and OGR-26 projects, added by Max Alekseyev, Sep 29 2010
a(27) proved by OGR-27, added by David Consiglio, Jr., Jun 09 2014
a(28) proved by OGR-28, added by David Consiglio, Jr., Jan 19 2023