A003022 Length of shortest (or optimal) Golomb ruler with n marks.
1, 3, 6, 11, 17, 25, 34, 44, 55, 72, 85, 106, 127, 151, 177, 199, 216, 246, 283, 333, 356, 372, 425, 480, 492, 553, 585
Offset: 2
Examples
a(5)=11 because 0-1-4-9-11 (0-2-7-10-11) resp. 0-3-4-9-11 (0-2-7-8-11) are shortest: there is no b0-b1-b2-b3-b4 with different distances |bi-bj| and max. |bi-bj| < 11.
References
- CRC Handbook of Combinatorial Designs, 1996, p. 315.
- A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff.
- S. W. Golomb, How to number a graph, pp. 23-37 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- Richard K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag (1994), Section C10.
- A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.
- Miller, J. C. P., Difference bases. Three problems in additive number theory. Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 299--322. Academic Press, London,1971. MR0316269 (47 #4817)
- Rhys Price Jones, Gracelessness, Proc. 10th S.-E. Conf. Combin., Graph Theory and Computing, 1979, pp. 547-552.
- Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Anonymous, In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers
- A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff. [Annotated scanned copy]
- Distributed.Net, Project OGR
- Kent Freeman, Unpublished notes. [Scanned copy]
- Michael Geißer, Theresa Körner, Sascha Kurz, and Anne Zahn, Squares with three digits, arXiv:2112.00444 [math.NT], 2021.
- S. W. Golomb, Letter to N. J. A. Sloane, 1972.
- A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13. [Annotated scanned copy]
- Joseph Malkevitch, Weird Rulers.
- G. Martin and K. O'Bryant, Constructions of generalized Sidon sets, arXiv:math/0408081 [math.NT], 2004-2005.
- L. Miller, Golomb Rulers
- K. O'Bryant, Sets of Natural Numbers with Proscribed Subsets, J. Int. Seq. 18 (2015) # 15.7.7
- Ed Pegg, Jr., Math Games: Rulers, Arrays, and Gracefulness
- B. Rankin, Golomb Ruler Calculations
- W. Schneider, Golomb Rulers
- J. B. Shearer, Golomb ruler table
- J. B. Shearer, Table of Known Optimal Golomb Rulers
- J. B. Shearer, Difference Triangle Sets: Known optimal solutions.
- J. B. Shearer, Difference Triangle Sets: Discoverers
- David Singmaster, David Fielker, N. J. A. Sloane, Correspondence, August 1979
- N. J. A. Sloane, First few optimal Golomb rulers
- D. Vanderschel et al., In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers
- Eric Weisstein's World of Mathematics, Golomb Ruler.
- Wikipedia, Golomb ruler
- Index entries for sequences related to Golomb rulers
Crossrefs
Programs
-
Mathematica
Min@@Total/@#&/@GatherBy[Select[Join@@Permutations/@Join@@Table[IntegerPartitions[i],{i,0,15}],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&],Length] (* Gus Wiseman, May 17 2019 *)
-
Python
from itertools import combinations, combinations_with_replacement, count def a(n): for k in count(n-1): for c in combinations(range(k), n-1): c = c + (k, ) ss = set() for s in combinations_with_replacement(c, 2): if sum(s) in ss: break else: ss.add(sum(s)) if len(ss) == n*(n+1)//2: return k # Jianing Song, Feb 14 2025, adapted from the python program of A345731
Formula
a(n) >= n(n-1)/2, with strict inequality for n >= 5 (Golomb). - David W. Wilson, Aug 18 2007
Extensions
425 sent by Ed Pegg Jr, Nov 15 2004
a(25), a(26) proved by OGR-25 and OGR-26 projects, added by Max Alekseyev, Sep 29 2010
a(27) proved by OGR-27, added by David Consiglio, Jr., Jun 09 2014
a(28) proved by OGR-28, added by David Consiglio, Jr., Jan 19 2023
Comments