A003120 Number of rooted trees with n nodes and omega-valency 1.
1, 1, 2, 3, 7, 13, 31, 66, 159, 365, 900, 2162, 5417, 13436, 34165, 86603, 223028, 574493, 1495524, 3900055, 10246172, 26982966, 71447432, 189664782, 505605729, 1351179886, 3623051567, 9737403960, 26243202664, 70878565004
Offset: 1
Examples
For n=4, the 3 rooted trees are O O O | / \ | | | / \ |
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J.-C. Arditti, Dénombrement des arborescences dont le graphe de comparabilité est Hamiltonien, Discrete Math., 5 (1973), 189-200.
- F. Harary and R. W. Robinson, Tapeworms, Unpublished manuscript, circa 1973. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to rooted trees
Programs
-
Maple
(Maple program from N. J. A. Sloane, Jul 27 2011, based on Eq. (2) of the Arditti paper. This proceeds in very small steps because I was trying to isolate the error in that formula. The error turns out to be in the display following (2): this is not phi(x). Otherwise Eq. (2) is correct.) S:=x*y + x^2*y + 2*x^3*y + x^4*(3*y+y^2) + x^5*(7*y+y^2+y^3); M:=30; for n from 6 to M do t5:=series(series(S,y,n),x,n+1); t6:=add( subs(x=x^k,subs(y=y^k,t5))/k, k=1..n+1); t7:=series(series(t6,y,n),x,n+1); t8:=(x/y)*(exp(t7)-1); t9:=series(series(t8,y,n),x,n+1); xf1:=subs(y=0,series(t5/y,y,n)); t10:=series(series(xf1,y,n),x,n+1); t11:=series(series(t9-x*t10,y,n),x,n+1); t12:=series(series(t11+x*y*t10+x*y,y,n),x,n+1); t13:=coeff(t12,x,n); S:=S+x^n*t13; od: xf1:=subs(y=0,series(S/y,y,M+1)); series(%,x,M+1); seriestolist(%);
-
Sage
def A003120_list(n): a = polygen(QQ, 'a') an = FractionField(a.parent()) ri = PowerSeriesRing(an, 'x') x = ri.gen() t = ri.zero().O(1) v = ri.zero().O(1) for l in range(n): truc = ri.zero() for k in range(1, l + 1): truc += ri([u(a=a**k) for u in t(x**k).truncate(l+1)]) / k t = a*x+x*v+x*(t-v)/a-x/a*(t+1)+x*(exp(truc))/a v = a*ri([u(a=0) for u in t/a]) return (v / a).coefficients() A003120_list(33) # F. Chapoton, Jul 26 2011
Formula
The generating function is probably not rational. - F. Chapoton, Jul 26 2011
The g.f. -(z-1)*(3*z**2+z-1)/(-1+3*z+z**2-7*z**3+3*z**4) conjectured by Simon Plouffe in his 1992 dissertation is wrong (starting from index 11).
Extensions
Corrected by F. Chapoton, Jul 26 2011
Confirmed and extended to n = 30 by N. J. A. Sloane, Jul 27 2011
Comments