A003152 A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))).
1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 23, 25, 27, 29, 30, 32, 34, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 52, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 85, 87, 88, 90, 92, 93, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 112, 114, 116
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Leonard Carlitz, Richard Scoville, and Verner E. Hoggatt, Jr., Pellian representations, Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
- Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, J. Int. Seq., Vol. 16 (2013), Article 13.1.8; preprint, 2012.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
- Index entries for sequences related to Beatty sequences.
Crossrefs
Complement of A003151.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Programs
-
Magma
[Floor(n*(1+1/Sqrt(2))): n in [1..70]]; // Vincenzo Librandi, Dec 26 2015
-
Maple
Digits := 100: t := evalf(1+sin(Pi/4)): A:= n->floor(t*n): seq(floor((t*n)),n=1..68); # Zerinvary Lajos, Mar 27 2009
-
Mathematica
Table[Floor[n (1 + 1/Sqrt[2])], {n, 70}] (* Vincenzo Librandi, Dec 26 2015 *)
-
PARI
a(n)=n+sqrtint(2*n^2)\2 \\ Charles R Greathouse IV, Jan 25 2022
-
Python
from math import isqrt def A003152(n): return n+isqrt(n**2>>1) # Chai Wah Wu, May 24 2025
Comments