A003160 a(1) = a(2) = 1, a(n) = n - a(a(n-1)) - a(a(n-2)).
1, 1, 1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 9, 10, 11, 12, 12, 12, 13, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 29, 30, 30, 30, 31, 32, 33, 33, 33, 34, 35, 36, 36, 36, 37, 37, 37, 38
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Representations for a special sequence, Fibonacci Quarterly 10.5 (1972), 499-518, 550.
Programs
-
Haskell
a003160 n = a003160_list !! (n-1) a003160_list = 1 : 1 : zipWith (-) [3..] (zipWith (+) xs $ tail xs) where xs = map a003160 a003160_list -- Reinhard Zumkeller, Aug 02 2013
-
Mathematica
Block[{a = {1, 1}}, Do[AppendTo[a, i - a[[ a[[-1]] ]] - a[[ a[[-2]] ]] ], {i, 3, 76}]; a] (* Michael De Vlieger, Dec 31 2020 *)
-
PARI
a(n)=if(n<3,1,n-a(a(n-1))-a(a(n-2)))
-
SageMath
@CachedFunction def a(n): return 1 if (n<3) else n - a(a(n-1)) - a(a(n-2)) [a(n) for n in range(1, 81)] # G. C. Greubel, Nov 06 2022
Formula
a(n) is asymptotic to n/2.
Conjecture: a(n) = E/2 where we start with A := n + 1, B := 0, L := A085423(A), C := A000975(L-1), D := 0, E := C and until A = B consecutively apply B := A, A := 2*C - A - (L mod 2) + 2, L := A085423(A), C := A000975(L-1), D := D + 1, E := (1 + [A = B])*E + (-1)^D*C. - Mikhail Kurkov, May 12 2025
Extensions
Edited by Benoit Cloitre, Jan 01 2003
Comments